Section: Pushdown Automata

Ch. 7 - Pushdown Automata

A DFA = (Q, Σ, δ, q₀, F)

input tape

| | a | a | b | b | a | b | |

tape head head moves

current state

0 1
Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).
Definition: Nondeterministic PDA (NPDA) is defined by

\[M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \]

where

- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(\Gamma \) is stack alphabet
- \(q_0 \) is initial state
- \(z \) is start stack symbol, \(z \in \Gamma \)
- \(F \subseteq Q \) is set of final states.

\(\delta : Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \) finite subsets of \(Q \times \Gamma^* \)
Example of transitions

\[\delta(q_1,a,b) = \{(q_3,b),(q_4,ab),(q_6,\lambda)\} \]

The diagram for the above transitions is:
Instantaneous Description:

\[(q,w,u)\]

Description of a Move:

\[(q_1,aw,bx) \vdash (q_2,w,yx)\]

iff

Definition Let \(M=(Q,\Sigma,\Gamma,\delta,q_0,z,F) \) be a NPDA. \(L(M)=\{w \in \Sigma^* \mid (q_0,w,z) \vdash^* (p,\lambda,u), \ p \in F, \ u \in \Gamma^*\} \). The NPDA accepts all strings that start in \(q_0 \) and end in a final state.
Example: \(L = \{ a^n b^n | n \geq 0 \} \), \(\Sigma = \{ a, b \} \),
\(\Gamma = \{ z, a \} \)
Another Definition for Language Acceptance

NPDA M accepts $L(M)$ by empty stack:

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w, z)^* \vdash (p, \lambda, \lambda) \}$$
Example: \(L = \{ a^n b^m c^{n+m} \mid n, m > 0 \} \),
\(\Sigma = \{ a, b, c \} \), \(\Gamma = \{ 0, z \} \)
Example: \(L = \{ ww^R | w \in \Sigma^+ \} \), \(\Sigma = \{ a, b \} \),
\(\Gamma = \{ z, a, b \} \)
Example: \(L=\{ww \mid w \in \Sigma^*\}, \Sigma = \{a, b\} \)

Examples for you to try on your own: (solutions are at the end of the handout).

- \(L=\{a^n b^m \mid m > n, m, n > 0\}, \Sigma = \{a, b\}, \Gamma = \{z, a\} \)
- \(L=\{a^n b^{n+m} c^m \mid n, m > 0\}, \Sigma = \{a, b, c\} \)
- \(L=\{a^n b^{2n} \mid n > 0\}, \Sigma = \{a, b\} \)
Definition: A PDA
$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ is deterministic if
for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M
s.t. $L = L(M)$.
Examples:

1. Previous pda for \(\{a^n b^n | n \geq 0\} \) is deterministic?

2. Previous pda for
\(\{a^n b^m c^{n+m} | n, m > 0\} \) is deterministic?

3. Previous pda for
\(\{ww^R | w \in \Sigma^+\}, \Sigma = \{a, b\} \) is deterministic?
Example: \(L = \{ a^n b^m | m > n, m, n > 0 \} \), \(\Sigma = \{ a, b \} \), \(\Gamma = \{ z, a \} \)

\[
\begin{array}{c}
q_0 \xrightarrow{a,z;az} q_1 \xrightarrow{a,a;aa} b,a;\lambda \xrightarrow{b,z;z} q_3
\end{array}
\]

Example: \(L = \{ a^n b^{n+m} c^m | n, m > 0 \} \), \(\Sigma = \{ a, b, c \} \),

\[
\begin{array}{c}
q_0 \xrightarrow{a,z;az} q_1 \xrightarrow{a,a;aa} b,a; \xrightarrow{b,z;bz} q_3
\end{array}
\]

Example: \(L = \{ a^n b^{2n} | n > 0 \} \), \(\Sigma = \{ a, b \} \)

\[
\begin{array}{c}
q_0 \xrightarrow{a,z;aa} q_1 \xrightarrow{b,a;\lambda} q_2 \xrightarrow{\lambda,z;\lambda} q_3
\end{array}
\]
Chapter 7.2

Theorem Given NPDA M that accepts by final state, \(\exists \) NPDA M\(^\prime\) that accepts by empty stack s.t. \(\mathcal{L}(M) = \mathcal{L}(M') \).

- Proof (sketch)

 \[M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \]

 Construct \(M' = (Q', \Sigma, \Gamma', \delta', q_s, z', F') \)
Theorem: Given NPDA M that accepts by empty stack, \exists NPDA M' that accepts by final state.

Proof: (sketch)

$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

Construct $M' = (Q', \Sigma, \Gamma', \delta', q_s, z', F')$
Theorem For any CFL L not containing λ, \exists an NPDA M s.t. $L=L(M)$.

- Proof (sketch)

 Given (λ-free) CFL L.

 $\Rightarrow \exists$ CFG G such that $L=L(G)$.

 $\Rightarrow \exists G'$ in GNF, s.t. $L(G)=L(G')$.

 $G'=(V,T,S,P)$. All productions in P are of the form:
Example: Let $G' = (V, T, S, P)$, $P =$

\[
\begin{align*}
S & \rightarrow aSA \mid aAA \mid b \\
A & \rightarrow bBBB \\
B & \rightarrow b
\end{align*}
\]
Theorem Given a NPDA M, \exists a NPDA M' s.t. all transitions have the form $\delta(q_i,a,A) = \{c_1, c_2, \ldots c_n\}$ where

$$c_i = (q_j, \lambda)$$

or

$$c_i = (q_j, BC)$$

Each move either increases or decreases stack contents by a single symbol.

- Proof (sketch)
Theorem If $L=L(M)$ for some NPDA M, then L is a CFL.

• Proof: Given NPDA M.
First, construct an equivalent NPDA M' that will be easier to work with. Construct M' such that

1. accepts if stack is empty
2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

$M' = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

Construct $G = (V, \Sigma, S, P)$ where

$V = \{(q_i c q_j) | q_i, q_j \in Q, c \in \Gamma\}$

Goal: $(q_0 z q_f)$ which will be the start symbol in the grammar.
Example:

$L(M) = \{aa^*b\}$, $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F),$

$Q = \{q_0, q_1, q_2, q_3\},$

$\Sigma = \{a, b\}, \Gamma = \{A, z\}, F = \{\}.}$
Construct the grammar $G=(V,T,S,P)$,

$V=\{(q_0Aq_0), (q_0zq_0), (q_0Aq_1), (q_0zq_1), \ldots \}$

$T=\Sigma$

$S=(q_0zq_2)$

$P=$
From transition 1 \((q_0 A q_1) \rightarrow b\)

From transition 2 \((q_1 z q_2) \rightarrow \lambda\)

From transition 3 \((q_0 A q_3) \rightarrow a\)

From transition 4 \((q_0 z q_0) \rightarrow a(q_0 A q_0)(q_0 z q_0)\) |
\(a(q_0 A q_1)(q_1 z q_0)\) |
\(a(q_0 A q_2)(q_2 z q_0)\) |
\(a(q_0 A q_3)(q_3 z q_0)\)

\((q_0 z q_1) \rightarrow a(q_0 A q_0)(q_0 z q_1)\) |
\(a(q_0 A q_1)(q_1 z q_1)\) |
\(a(q_0 A q_2)(q_2 z q_1)\) |
\(a(q_0 A q_3)(q_3 z q_1)\)

\((q_0 z q_2) \rightarrow a(q_0 A q_0)(q_0 z q_2)\) |
\(a(q_0 A q_1)(q_1 z q_2)\) |
\(a(q_0 A q_2)(q_2 z q_2)\) |
\(a(q_0 A q_3)(q_3 z q_2)\)

\((q_0 z q_3) \rightarrow a(q_0 A q_0)(q_0 z q_3)\) |
\(a(q_0 A q_1)(q_1 z q_3)\) |
\(a(q_0 A q_2)(q_2 z q_3)\) |
\(a(q_0 A q_3)(q_3 z q_3)\)
From transition 5 \((q_3 z q_0) \rightarrow (q_0 A q_0)(q_0 z q_0)\) |
\((q_0 A q_1)(q_1 z q_0)\) |
\((q_0 A q_2)(q_2 z q_0)\) |
\((q_0 A q_3)(q_3 z q_0)\)

\((q_3 z q_1) \rightarrow (q_0 A q_0)(q_0 z q_1)\) |
\((q_0 A q_1)(q_1 z q_1)\) |
\((q_0 A q_2)(q_2 z q_1)\) |
\((q_0 A q_3)(q_3 z q_1)\)

\((q_3 z q_2) \rightarrow (q_0 A q_0)(q_0 z q_2)\) |
\((q_0 A q_1)(q_1 z q_2)\) |
\((q_0 A q_2)(q_2 z q_2)\) |
\((q_0 A q_3)(q_3 z q_2)\)

\((q_3 z q_3) \rightarrow (q_0 A q_0)(q_0 z q_3)\) |
\((q_0 A q_1)(q_1 z q_3)\) |
\((q_0 A q_2)(q_2 z q_3)\) |
\((q_0 A q_3)(q_3 z q_3)\)
Recognizing aaab in M:

\[(q_0, aaab, z) \vdash (q_0, aab, Az)\]
\[\vdash (q_3, ab, z)\]
\[\vdash (q_0, ab, Az)\]
\[\vdash (q_3, b, z)\]
\[\vdash (q_0, b, Az)\]
\[\vdash (q_1, \lambda, z)\]
\[\vdash (q_2, \lambda, \lambda)\]

Derivation of string aaab in G:

\[(q_0zq_2) \Rightarrow a(q_0Aq_3)(q_3zq_2)\]
\[\Rightarrow aa(q_3zq_2)\]
\[\Rightarrow aa(a(q_0Aq_3)(q_3zq_2))\]
\[\Rightarrow aaa(q_3zq_2)\]
\[\Rightarrow aaa(a(q_0Aq_1)(q_1zq_2))\]
\[\Rightarrow aaab(q_1zq_2)\]
\[\Rightarrow aaab\]
Chapter 7.3

Definition: A PDA

\(M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \) is deterministic if for every \(q \in Q, \ a \in \Sigma \cup \{\lambda\}, \ b \in \Gamma \)

1. \(\delta(q, a, b) \) contains at most 1 element
2. if \(\delta(q, \lambda, b) \neq \emptyset \) then \(\delta(q, c, b) = \emptyset \) for all \(c \in \Sigma \)

Definition: \(L \) is DCFL iff \(\exists \) DPDA \(M \) s.t. \(L = L(M) \).
Examples:

1. Previous pda for \(\{a^nb^n \mid n \geq 0\} \) is deterministic.

2. Previous pda for \(\{a^nb^mc^{n+m} \mid n, m > 0\} \) is deterministic.

3. Previous pda for \(\{ww^R \mid w \in \Sigma^+\}, \Sigma = \{a, b\} \) is nondeterministic.

Note: There are CFL’s that are not deterministic.

\[L = \{a^nb^n \mid n \geq 1\} \cup \{a^nb^{2n} \mid n \geq 1\} \text{ is a CFL and not a DCFL.} \]

• Proof:

\[L = \{a^nb^n : n \geq 1\} \cup \{a^nb^{2n} : n \geq 1\} \]

It is easy to construct a NPDA for \(\{a^nb^n : n \geq 1\} \) and a NPDA for \(\{a^nb^{2n} : n \geq 1\} \). These two can be joined together by a new start state
and λ-transitions to create a NPDA for L. Thus, L is CFL.

Now show L is not a DCFL. Assume that there is a deterministic PDA M such that $L = L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

Construct a PDA M' as follows:

1. Create two copies of M: M_1 and M_2. The same state in M_1 and M_2 are called cousins.

2. Remove accept status from accept states in M_1, remove initial status from initial state in M_2. In our new PDA, we will start in M_1 and accept in M_2.

3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in
M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both a^nb^n and a^nb^{2n}. After reading n b’s, must accept if no more b’s and continue if there are more b’s.

4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

This is the construction of our new PDA.

When we read a^nb^n and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of a^nb^{2n}. Only the b’s in M_2 have been replaced by c’s, so the new machine accepts $a^nb^nc^n$.

The language accepted by our new PDA is $a^nb^nc^n$. But this is not a CFL. Contradiction! Thus there is
no deterministic PDA M such that $L(M) = L$. Q.E.D.