Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:
Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms

Definition of TM

- Storage
 - tape
- actions
 - write symbol
 - read symbol
 - move left (L) or right (R)
- computation
 - initial configuration
 - start state
 - tape head on leftmost tape square
 - input string followed by blanks
 - processing computation
 - move tape head left or right
 - read from and write to tape
 - computation halts
 - final state

Formal Definition of TM

A TM M is defined by $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ where

- Q is finite set of states
- Σ is input alphabet
- Γ is tape alphabet
- $B \in \Gamma$ is blank
- q_0 is start state
- F is set of final states
- δ is transition function

 $\delta(q,a) = (p,b,R)$ means “if in state q with the tape head pointing to an ’a’, then move into state p, write a ’b’ on the tape and move to the right”.

TM as Language recognizer

Definition: Configuration is denoted by \(\vdash \).

If \(\delta(q, a) = (p, b, R) \) then a move is denoted

\[
\text{abaqabba} \vdash \text{ababpbba}
\]

Definition: Let \(M \) be a TM, \(M=(Q, \Sigma, \Gamma, \delta, q_0, B, F) \). \(L(M) = \{ w \in \Sigma^* | q_0 w \vdash x_1 q_f x_2 \text{ for some } q_f \in F, x_1, x_2 \in \Gamma^* \} \)

TM as language acceptor

\(M \) is a TM, \(w \) is in \(\Sigma^* \),

- if \(w \in L(M) \) then \(M \) halts in final state
- if \(w \notin L(M) \) then either
 - \(M \) halts in non-final state
 - \(M \) doesn’t halt

Example

\(\Sigma = \{a, b\} \)

Replace every second 'a' by a 'b' if string is even length.

- Algorithm
Example:

$L = \{ a^n b^n c^n | n \geq 1 \}$

Is the following TM Correct?

TM as a transducer

TM can implement a function: $f(w) = w'$

```
start with:  \[ w \]

end with: \[ w' \]
```
Definition: A function with domain \(D \) is *Turing-computable* or *computable* if there exists TM \(M=(Q,\Sigma,\Gamma,\delta,q_0,B,F) \) such that

\[
q_0w \vdash^* q_f f(w)
\]

\(q_f \in F \), for all \(w \in D \).

Example:

\(f(x) = 2x \)

\(x \) is a unary number

Start with: 111

\[\uparrow \]

End with: 111111

\[\uparrow \]

Is the following TM correct?
Example:

$L = \{ww \mid w \in \Sigma^+\}, \Sigma = \{a, b\}$