Regular Expressions

Method to represent strings in a language

+ union (or)
◦ concatenation (AND) (can omit)
∗ star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]

Definition Given \(\Sigma\),

1. \(\emptyset, \lambda, a \in \Sigma\) are R.E.
2. If \(r\) and \(s\) are R.E. then
 - \(r+s\) is R.E.
 - \(rs\) is R.E.
 - \((r)\) is a R.E.
 - \(r^*\) is R.E.
3. \(r\) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r)\) = language denoted by R.E. \(r\).

1. \(\emptyset, \{\lambda\}, \{a\}\) are L denoted by a R.E.
2. if \(r\) and \(s\) are R.E. then
 - \(L(r+s) = L(r) \cup L(s)\)
 - \(L(rs) = L(r) \circ L(s)\)
 - \(L((r)) = L(r)\)
 - \(L((r)^*) = (L(r)^*)\)

Precedence Rules

\(\ast\) highest
\(\circ\)
\(+\)

Example:

\(ab^* + c =\)
Examples:

1. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\} \).

2. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\} \).

3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- **Proof:**
 - \(\emptyset \)
 - \(\{\lambda\} \)
 - \(\{a\} \)

 Suppose \(r \) and \(s \) are R.E.

 1. \(r + s \)
 2. \(r \circ s \)
 3. \(r^* \)

Example

\(ab^* + c \)

Theorem Let \(L \) be regular. Then \(\exists \) R.E. \(r \) s.t. \(L=L(r) \).

Proof Idea: remove states successively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

- **Proof:**
 - \(L \) is regular
 - \(\Rightarrow \exists \)
 1. Assume \(M \) has one final state and \(q_0 \not\in F \)
 2. Convert to a generalized transition graph (GTG), all possible edges are present.

 If no edge, label with

 Let \(r_{ij} \) stand for label of the edge from \(q_i \) to \(q_j \)

 3. If the GTG has only two states, then it has the following form:

 In this case the regular expression is:

 \(r = (r_{ii}^* r_{ij} r_{jj}^* r_{ji})^* r_{ii}^* r_{ij} r_{jj}^* \)

 4. If the GTG has three states then it must have the following form:
In this case, make the following replacements:

<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule

r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$

with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left.

Finish with step 3.

6. In each step, simplify the regular expressions r and s with:
\[
\begin{align*}
 r + r &= r \\
 s + r^* s &= \\
 r + \emptyset &= \\
 r \emptyset &= \\
 \emptyset^* &= \\
 r \lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)^* &= \\
\end{align*}
\]
and similar rules.

Example:

Section 3.3

Grammar \(G = (V, T, S, P) \)

- **V** variables (nonterminals)
- **T** terminals
- **S** start symbol
- **P** productions

Right-linear grammar:

all productions of form

\[
A \rightarrow xB \\
A \rightarrow x
\]

where \(A, B \in V, \ x \in T^* \)

Left-linear grammar:

all productions of form

\[
A \rightarrow Bx \\
A \rightarrow x
\]

where \(A, B \in V, \ x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]

Example 2:

\[G = (\{S,B\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]

Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\(\iff \) Given a regular grammar \(G \)
- Construct NFA \(M \)
- Show \(L(G) = L(M) \)

\(\implies \) Given a regular language
- \(\exists \) DFA \(M \) s.t. \(L = L(M) \)
- Construct reg. grammar \(G \)
- Show \(L(G) = L(M) \)

Proof of Theorem:

\(\iff \) Given a regular grammar \(G \)
\[G = (V, T, S, P) \]
\[V = \{V_0, V_1, \ldots, V_y\} \]
\[T = \{v_0, v_1, \ldots, v_z\} \]
\[S = V_0 \]
- Assume \(G \) is right-linear
 (see book for left-linear case).
- Construct NFA \(M \) s.t. \(L(G) = L(M) \)
- If \(w \in L(G) \), \(w = v_1 v_2 \ldots v_k \)

\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]
- \(V_0 \) is the start (initial) state
- For each production, \(V_i \rightarrow aV_j \),
For each production, \(V_i \rightarrow a \),

Show \(L(G) = L(M) \)

Thus, given R.G. G,

\(L(G) \) is regular

(\(\Rightarrow \)) Given a regular language \(L \)

\(\exists \) DFA M s.t. \(L = L(M) \)

\(M = (Q, \Sigma, \delta, q_0, F) \)

\(Q = \{ q_0, q_1, \ldots, q_n \} \)

\(\Sigma = \{ a_1, a_2, \ldots, a_m \} \)

Construct R.G. G s.t. \(L(G) = L(M) \)

\(G = (Q, \Sigma, q_0, P) \)

if \(\delta(q_i, a_j) = q_k \) then

if \(q_k \in F \) then

Show \(w \in L(M) \iff w \in L(G) \)

Thus, \(L(G) = L(M) \).

QED.

Example

\(G = (\{ S, B \}, \{ a, b \}, S, P), P = \)

\(S \rightarrow aB \mid bS \mid \lambda \)

\(B \rightarrow aS \mid bB \)

Example:

\[q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_0 \]