Section: Regular Languages

Regular Expressions

Method to represent strings in a language

- union (or)
- concatenation (AND) (can omit)
- star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]
Definition Given Σ,

1. \emptyset, λ, $a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r + s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \text{language denoted by R.E. } r. \)

1. \(\emptyset, \{\lambda\}, \{a\} \) are L denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then

 (a) \(L(r+s) = L(r) \cup L(s) \)

 (b) \(L(rs) = L(r) \circ L(s) \)

 (c) \(L((r)) = L(r) \)

 (d) \(L((r)^*) = (L(r)^*) \)
Precedence Rules

* highest

Example:

\(ab^* + c = \)
Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}$.

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\}$.

3. Regular expression for positive and negative integers
Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $L(M) = L(r)$.

- Proof:

 \emptyset

 $\{\lambda\}$

 $\{a\}$

Suppose r and s are R.E.

1. $r+s$
2. $r \circ s$
3. r^*
Example

\[ab^* + c \]
Theorem Let L be regular. Then ∃ R.E. r s.t. L=L(r).

Proof Idea: remove states successively until two states left

• Proof:

 L is regular
 ⇒ ∃

1. Assume M has one final state and q₀ ∉ F

2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with
 Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}^* r_{ij} r_{ji}^* r_{ji}^* r_{ij}^* r_{jj}^*) r_{ii}^* r_{ij} r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>remove state q_k</td>
<td></td>
</tr>
</tbody>
</table>
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

\[r + r = r \]
\[s + r^*s = \]
\[r + \emptyset = \]
\[r\emptyset = \]
\[\emptyset^* = \]
\[r\lambda = \]
\[(\lambda + r)^* = \]
\[(\lambda + r)r^* = \]

and similar rules.
Example:
Grammar $G=(V,T,S,P)$

V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$
$A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A, B \in V, \ x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\((\Leftarrow)\) Given a regular grammar \(G \)
Construct NFA \(M \)
Show \(L(G) = L(M) \)

\((\Rightarrow)\) Given a regular language
\(\exists \) DFA \(M \) s.t. \(L = L(M) \)
Construct reg. grammar \(G \)
Show \(L(G) = L(M) \)
Proof of Theorem:

\[\iff \] Given a regular grammar \(G \)
\[G=(V,T,S,P) \]
\[V=\{V_0, V_1, \ldots, V_y\} \]
\[T=\{v_o, v_1, \ldots, v_z\} \]
\[S=V_0 \]
Assume \(G \) is right-linear
(see book for left-linear case).
Construct NFA \(M \) s.t. \(L(G)=L(M) \)
If \(w \in L(G) \), \(w=v_1v_2 \ldots v_k \)
$M=(V \cup \{V_f\}, T, \delta, V_0, \{V_f\})$

V_0 is the start (initial) state

For each production, $V_i \rightarrow aV_j$,

For each production, $V_i \rightarrow a$,

Show $L(G)=L(M)$

Thus, given R.G. G,

$L(G)$ is regular
(⇒) Given a regular language \(L \)
\[\exists \text{ DFA } M \text{ s.t. } L = L(M) \]
\[M = (Q, \Sigma, \delta, q_0, F) \]
\[Q = \{ q_0, q_1, \ldots, q_n \} \]
\[\Sigma = \{ a_1, a_2, \ldots, a_m \} \]

Construct \(\text{R.G. } G \) s.t. \(L(G) = L(M) \)
\[G = (Q, \Sigma, q_0, P) \]
If \(\delta(q_i, a_j) = q_k \) then

If \(q_k \in F \) then

Show \(w \in L(M) \iff w \in L(G) \)
Thus, \(L(G) = L(M) \).

QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example: