MAD Skills: New Analysis Practices for Big Data

Ronnie and Xuting

Some slides borrowed from a presentation on Joseph M. Hellerstein’s page

What’s new?

- Storage becomes cheap
- Growing number of massive-scale data: Clickstreams, software logs, email and forum archives
- Sophisticated data analysis leads to cost savings and even direct revenue!
- What’s the solution? Greenplum!

Madgenda

- New requirements – MAD skills
- Fox Audience Network and challenges
- Overview of MAD model
- Supporting analytical functions in SQL
- A real MAD DBMS from Greenplum
- Questions we have

A hot job

"Looking for a career where your services will be in high demand?"

... Provide a scarce, complementary service to something that is getting ubiquitous and cheap.

"So what’s ubiquitous and cheap? Data. And what is complementary to data? Analysis."

Hal Varian, UC Berkeley, Chief Economist @ Google

MAD skills

- Magnetic
 attract data and analysts
- Agile
 rapid iteration
- Deep
 sophisticated analytics in Big Data
- In contrast with traditional Enterprise Data Warehouse and Business Intelligence.

Demanding Analysts

- Statisticians may have strong software skills.
- But would typically rather focus on deep data analysis.
- They wish to be freed from the work of DBA; need to be complemented by MAD data warehouse design.
Getting close to MAD (standard approaches)

- Data Cubes, OLAP descriptive statistics; coarse overview
- Statistical packages (SAS, Matlab, R) takes huge time to load the data pushing the computation to data?
- Map/Reduce adopted by MAD
- Data mining algorithms targeted, black-box implementation
- Sloan Digital Sky Survey, SciDB

Fox Audience Network

- Greenplum DB
 - 42 Sun X4500s ("Thumper") each with:
 - 48 500GB-drives
 - 16GB RAM
 - 2 dual-core Opterons
- Big and growing
 - 200 TB data (mirrored)
 - Fact table of 1.5 trillion rows
 - Growing 5TB per day
 - 4-7 Billion rows per day
- Variety of data
 - Ad logs, CRM, User data
- Research & Reporting
 - Diversity of users from Sales Mgmt to Research Scientists
 - Microstrategy to command-line SQL
- Also extensive use of R and Hadoop

As reported by FAN, Feb, 2009

A Scenario from FAN

How many female WWF fans under the age of 30 visited the Toyota community over the last 4 days and saw a Class A ad?

How are these people similar to those that visited Nissan?

Open-ended question about statistical densities (distributions)

Challenges

- Huge data from different sources
- Disparate users pops up different questions (ranging from left to right)
- No set of predefined aggregates could cover every question
- R is very popular for multi-dimensional statistical analysis; however...

Getting real MAD

- Traditional Data Warehouse philosophy: There is no point in bringing data into the data warehouse environment without integrating it.
- It takes too much time!
- Analysts are tolerant to dirty data
- Satisfying the need of analysts is important and healthy

Virtuous Cycle of Analytics

- Analysts are not DBAs
 - They are data magnets
 - They tolerate and clean dirty data
 - They like all the data (no samples/extracts)
 - They produce data

Figure: A Healthy Organization
MAD Modeling

- Any comment on the model?

Statistical methods

- A hierarchy of mathematical concepts in SQL (MapReduce could also be used!)
 - scalar -> vector -> function -> functional
- Encapsulated as stored procedures or UDFs
- Significantly enhance the vocabulary of the DBMS
- Requirements: focus on density methods; run massively parallel, on Big Data!

In the paper

- Linear algebra (vectors/matrices)
- Ordinary Least Squares (multiple linear regression)
- Conjugate Gradiant (iterative optimization, e.g. for SVM classifiers)
- Functionals including Mann-Whitney U test, Log-likelihood ratios
- Resampling techniques, e.g. bootstrapping

Questions

- The paper presents operations written in SQL, any clue on Map/Reduce?
- There must be an optimizer, where?
- How is the final performance?
- It claims to run in parallel, how is it done? All we can see is normal SQL query.
- Not every query can be parallelized, so the programmer(analyst) need to think carefully.

Greenplum DB overview

- Unified execution of SQL, MapReduce on a common parallel execution engine
- Any trace of "Transaction Manager" in the paper?

MAD DBMS - Magnetic

- High speed loading – data-friendly
- Run queries on external tables
- Parallel accessing: Scatter/Gather Streaming requires external parallel feeding
- ETL vs. ELT (typo found!!)
- Parallel many-to-many loading architecture
- Promises: Automatic repartitioning of data from external sources; Performance scales with number of nodes; Negligible impact on concurrent database operations
- Example: 4 Tb/hour on FAN production system
MAD DBMS - Agile
- Multiple storage mechanism for different stages of data: data life cycle
- External storage/Greenplum AO storage
- Partitioning tables: partition exclusion; different storage format; atomic partition exchange

MAD DBMS - Deep
- Data analysts from different background: R, SAS, Matlab Java, Perl, Python
 How did they do this? Postgres.
- Map/Reduce programming interface AGAIN this is a simulation of Hadoop
- Attracts analysts; provides different programming styles; deep development

Future work
- Optimizing storage solution and queries at the same time (too many choices for now);
- Free analysts from physical design (data layout, writing queries without thinking parallel);
- Online query processing (similar to online MapReduce)

Interesting. But...
- Does it really work?

 ![Yes!!](image)
 ...as long as the big boss is happy

Interesting. But...
- Any technical details? eg. how are queries parallelized? Any optimization approaches? Execution engine?
- If we write in R (and other languages), it is not automatic parallel! Any clue about this?
- How does Map/Reduce provided here compare to Hadoop?
- Seems an ad for Greenplum?