Algebraic Optimization of Computations over Scientific Databases
Risi Thonangi
CPS 296.1

Scientific Computation Example
• Extrapolation
 – Polynomial curve-fitting; gaussian mixtures; ...
• Other examples
 – Interpolation, Selection, FFT, ...

Running scientific computation
• Difficult because ...
 – Various logical and physical operators exist
 – Coding is an involved job
 – Data format conversions need care

Database approach to scientific data
• Makes scientific computing easier
• Other goodies offered by database systems
 – Extensibility
 – Support for query optimization
 – Logical and Physical data independence

Next ...
• Supporting scientific computing in Volcano database system
 1. Data types in the system
 2. Supported logical and physical operators
 3. Handling query optimization
 • Transformations and implementation rules
 • An example for scientific query optimization

1. Data types
• Sets
 – Similar to relations
 – Logical properties: schema, cardinality, ...
• Time series
 – Similar to a relation but contains a time attribute
 – Logical properties: start and stop times, and fixed time delta
• Spectra
 – Similar to a relation but contains a frequency attribute
 – Logical properties: frequency range and fixed frequency delta
2. Logical and physical operators

- List of relational and scientific operators

<table>
<thead>
<tr>
<th>Type</th>
<th>Logical Operators</th>
<th>Physical Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq</td>
<td>Block, Nested, Rowe, zip</td>
<td>Block, Merge, zip</td>
</tr>
<tr>
<td>Time</td>
<td>Date, Time, Repeat, Aggregate</td>
<td>Date, Time, Repeat, Aggregate</td>
</tr>
<tr>
<td>Sparse</td>
<td>Specializing Merge</td>
<td>Sparse, Zip</td>
</tr>
<tr>
<td>All</td>
<td>Plain, Merge</td>
<td>Plain, Zip</td>
</tr>
<tr>
<td>Corr</td>
<td>Correlation, Time series, Spectral, FFT</td>
<td>Correlation, Time series, Spectral, FFT</td>
</tr>
<tr>
<td>Buffer</td>
<td>Buffer, Zip</td>
<td>Buffer, Zip</td>
</tr>
</tbody>
</table>

May ask for fixed output cardinality

Update every time position by considering values in a window around it

Two-step procedure:
1. Do a bit-reverse sort
2. Build and execute an FFT processing tree

Support for physical operators

- Iterator-style execution
 - Volcano’s existing iterators for most operators
 - New window-iterator added to support windowing operators

3. Handling query optimization

- Made easy by the extensible volcano query optimizer generator
- Optimizer generator accepts following inputs
 - Logical and physical operators
 - Transformation and implementation rules
 - Cost functions
 - Logical and physical properties
 - ...

Handling query optimization: Transformations

- Logical transformations
 - Helps the optimizer find equivalent query expressions
 - Encoded as rules
 - Care required in order to handle effects of numerical accuracy and stability
- Example transformations
 - All standard relational transformations

Handling query optimization: Transformations (contd.)

- Example transformations (contd.)
 - All standard relational transformations
 - Transformations involving the sampling operator
 - Time series and spectra operator transformations

Handling query optimization: Transformations (contd.)

- Example transformations (contd.)
 - Interpolations and merges
 - Digital filtering operators

- Difficult to transform operators
 - Digital filtering operators
Handling query optimization: Implementation rules

- Implementation rules help convert a logical plan to physical plans
- Encoded as rules
- Examples
 - All relational rules
 - Polynomial curve fitting for interpolation
 - Special case execution to compute two FFTs in one invocation
- To resolve between multiple implementation rules, use
 - Cost functions
 - Heuristics

Summary

- Database approach to time-series data
 - Benefits include data independence, query optimization, ...
- Can accuracy be a part of query optimization?
 - How to account for loss of accuracies across multiple query operators?
- How about other types of scientific data?
 - Does relational approach work?