Lecture 6, Feb 1, 2011, sorting algorithms II

We study heap sort in this class.

The heap data structure is an array object that can be viewed as a complete binary tree, as shown in the above figure. The tree is completed filled on all levels except possibly the lowest, which is filled from the left up to a point.

The root of the tree is \(A[1] \), and given the index \(i \) of a node, the indices of its parent \(\text{PARENT}(i) \), left child \(\text{LEFT}(i) \), and right child \(\text{RIGHT}(i) \) can be computed by

\[
\begin{align*}
\text{PARENT}(i) &: \quad \text{return} \ \text{floor}(i/2) \\
\text{LEFT}(i) &: \quad \text{return} \ 2i \\
\text{RIGHT}(i) &: \quad \text{return} \ 2i + 1
\end{align*}
\]

Heaps also satisfy the heap property: for every node other than the root,

\[
A[\text{PARENT}(i)] \geq A[i],
\]

that is, the value of a node is at most the value of its parent. Thus, the largest element in the heap is stored at the root, and the subtrees rooted at a node contain smaller values than does the node itself.

An array \(A \) that represents a heap has two attributes:

1. \(\text{length}(A) \): equals to the number of elements stored in the array.
2. \(\text{heap-size}(A) \): equals to the number of elements in the heap stored within array \(A \).

Example, consider two arrays

1. \(A = <16, 4, 10, 2, 3, 8, 9> \), \(\text{length}(A) = 7 \), \(\text{heap-size}(A) = 7 \).
2. \(B = <16, 10, 4, 2, 3, 8, 9> \), \(\text{length}(B) = 7 \), \(\text{heap-size}(B) = 5 \).

Algorithm heapify:

1. Inputs: an array \(A \) and an index \(i \) into the array.
2. Assumption: the binary trees rooted at \(\text{LEFT}(i) \) and \(\text{RIGHT}(i) \) are heaps (\(A[i] \) might violates the heap property).

\begin{verbatim}
1 \ell \leftarrow \text{LEFT}(i) \\
2 r \leftarrow \text{RIGHT}(i) \\
3 \text{if } \ell \leq \text{heap-size}[A] \text{ and } A[\ell] > A[i] \\
4 \text{largest} \leftarrow \ell \\
5 \text{else } \text{largest} \leftarrow i \\
6 \text{if } r \leq \text{heap-size}[A] \text{ and } A[r] > A[\text{largest}] \\
7 \text{largest} \leftarrow r \\
8 \text{if } \text{largest} \neq i \\
9 \text{exchange} [A] \leftrightarrow A[\text{largest}] \\
\end{verbatim}
10 heapify(A, largest)

At each step, the largest of the elements A[i], A[LEFT(i)], A[RIGHT(i)] is determined, and its index is stored in largest. If A[i] is largest, then the subtree rooted at node i is a heap and the procedure terminates. Otherwise, one of the two children has the largest element, and A[i] is swapped with A[largest], which causes node i and its children to satisfy the heap property. The node largest, however, now has the original value A[i], and thus the subtree rooted at largest may violate the heap property. Consequently, heapify must be called on that subtree.

Example: Consider an array A =< 16, 4, 10, 14, 7, 9, 3, 2, 8, 1 >. Assume heap-size(A) = 10, then what are the actions of heapify(A, 2)?

1. largest = 4
 ⇒ < 16, 14, 10, 4, 7, 9, 3, 2, 8, 1 >
3. Call heapify(A, 4)
4. largest = 9
 ⇒ < 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 >
6. Call heapify(A, 9)

Algorithm build-heap

1 heap-size[A] ← length(A)
2 for i ← floor(length(A)/2), . . . , 1
3 call heapify(A, i)

We use the algorithm heapify in a bottom-up manner to convert the input into a heap. Notice that starting from A[floor(n/2)], all the elements in the array are leaves, each of which is a 1-element heap.

Example: Consider an array A =< 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 >. What are the actions of build-heap(A)?

1. i = 5, call heapify(A, 5), A doesn’t change.
2. i = 4, call heapify(A, 4),
 ⇒ A =< 4, 1, 3, 14, 16, 9, 10, 2, 8, 7 >
 call heapify(A, 8) and A doesn’t change.
3. i = 3, call heapify(A, 3),
 ⇒ A =< 4, 1, 10, 14, 16, 9, 3, 2, 8, 7 >
 call heapify(A, 7) and A doesn’t change.
(4) $i = 2$, call heapify(A, 2),

$\Rightarrow A =< 4, 16, 10, 14, 7, 9, 3, 2, 8, 7 >$

call heapify(A, 5),

$\Rightarrow A =< 4, 16, 10, 14, 7, 9, 3, 2, 8, 1 >$

call heapify(A, 10) and A doesn’t change.

(5) $i = 1$, call heapify(A, 1),

$\Rightarrow A =< 16, 4, 10, 14, 7, 9, 3, 2, 8, 1 >$

call heapify(A, 2),

$\Rightarrow A =< 16, 14, 10, 4, 7, 9, 3, 2, 8, 1 >$

call heapify(A, 4),

$\Rightarrow A =< 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 >$

call heapify(A, 9) and A doesn’t change.

Algorithm heapsort

1. build-heap(A)
2. for $i \leftarrow$ length(A), \ldots, 2
4. heap-size[A] \leftarrow heap-size(A) $- 1$
5. heapify(A, 1)

We state without proof that the complexity of heap sort is $O(n \log n)$.

Comparison between heap sort and merge sort:

(1) auxiliary space for merge sort
(2) parallelization
(3) cache behavior