1. (15 points) Compute
\[
\begin{pmatrix}
1 & 3 & 0 \\
2 & 5 & 7 \\
3 & 6 & 0 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
3 & 4 & 4 & 2 \\
5 & 5 & 6 & 7 \\
6 & 8 & 9 & 10 \\
\end{pmatrix}
\]

Solution:
\[
\begin{pmatrix}
18 & 19 & 22 & 23 \\
73 & 89 & 101 & 109 \\
39 & 42 & 48 & 48 \\
\end{pmatrix}
\]

2. (15 points) Show that isomorphism of simple graphs is an equivalent relation.

Solution: We need to verify the reflexivity, symmetry, and transitivity.

Reflexivity: use identity function as the isomorphism function.

Symmetry: If \(f \) is the isomorphism between \(G_1 \) and \(G_2 \). Then the inverse of \(f \) is the isomorphism between \(G_2 \) and \(G_1 \).

Transitivity: If \(f \) is the isomorphism between \(G_1 \) and \(G_2 \), and \(g \) is the isomorphism between \(G_2 \) and \(G_3 \), then \(gf \) is the isomorphism from \(G_1 \) to \(G_3 \).

Use the definition of isomorphism to check. If \(a \) and \(b \) are connected in \(G_1 \) then \(f(a) \) and \(f(b) \) must be connected in \(G_2 \), and then \(g(f(a)) \) and \(g(f(b)) \) must be connected in \(G_3 \). This shows \(G_1 \) and \(G_3 \) are isomorphic.

3. (15 points) Show that the property that a graph is bipartite is an isomorphic invariant.

Solution: If \(G \) and \(H \) are isomorphic and \(G \) is a bipartite graph, we show \(H \) is also a bipartite graph.

By definition, the vertex set of \(G \) can be divided into two disjoint subsets \(V_1 \) and \(V_2 \) such that each edge in \(G \) has an endpoint in \(V_1 \) and the other one in \(V_2 \).

Let \(f \) be the isomorphism function between \(G \) and \(H \). Then let \(W_1 = f(V_1) \) and \(W_2 = f(V_2) \). As \(f \) is a bijective function, \(W_1 \) and \(W_2 \) are disjoint since \(V_1 \) and \(V_2 \) are. Also, \(W_1 \cup W_2 \) is the vertex set of \(H \).

We only need to verify that every edge in \(H \) has an endpoint in \(W_1 \) and the other one in \(W_2 \). As \(G \) and \(H \) are isomorphic, then for every distinct vertices \(a \) and \(b \) in \(G \), they are adjacent if and only if \(f(a) \) and \(f(b) \) are adjacent. Therefore, for any edge \(e = \{a, b\} \) in \(G \), we can find a corresponding one \(e' = \{f(a), f(b)\} \) in \(H \). As \(G \)
is bipartite, one of the vertices is in V_1 and the other one is in V_2, meaning one of $f(a)$ and $f(b)$ is in W_1 and the other one is in W_2. Therefore, H is bipartite.

4. (15 points) Use paths either to show that these graphs are not isomorphic or to find an isomorphism between them.

Solution: G and H both have 8 vertices, 12 edges, and each vertex has degree 3. There exists circuit of length 3 to 8 in each graph. We will use a length 8 circuit to find the isomorphism.

Since the vertices have the same degree, the construction needs a little bit more observation. We realize that there exist two length 3 circuits in each graph which are connected by a single edge. For G, it is u_1, u_2, u_3 and u_8, u_7, u_6, the two are connected by edge $\{u_1,u_8\}$. For H, it is v_1, v_2, v_3 and v_5, v_6, v_7, the two are connected by edge $\{v_2,v_6\}$.

We use this particular information, build a length 8 circuit in G as $u_3, u_2, u_1, u_8, u_7, u_6, u_5, u_4$.

The two length 3 circuits are traversed one after the other. This leads to a mapping $v_3, v_1, v_2, v_6, v_5, v_7, v_8, v_4$.

With this particular order, we write down the adjacency matrices for each graph, and find they are the same as follows.

\[
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{pmatrix}
\]
5. (20 points) Show that if a simple graph G has k connected components and these components have n_1, n_2, \ldots, n_k vertices, respectively, then the number of edges of G does not exceed

$$\sum_{i=1}^{k} C(n_i, 2)$$

Solution: Each connect component with n_i vertices can have at most $C(n_i, 2)$ edges. That corresponds to the case every distinct vertices are connected with an edge. Since G is a simple graph, there can be at most one edge between any distinct vertices.

6. (15 points) (Bonus) Use previous result to show that a simple graph with n vertices and k connected components has at most $\frac{(n-k)(n-k+1)}{2}$ edges.

Hint: First, show that

$$\sum_{i=1}^{k} n_i^2 \leq n^2 - (k - 1)(2n - k),$$

where n_i is the number of vertices in the ith connected component. To show that, consider

$$\sum_{i=1}^{k} (n_i - 1) = n - k$$

Solution: Square on both sides of $\sum_{i=1}^{k} (n_i - 1) = n - k$, we then have

$$\sum_{i=1}^{k} (n_i - 1)^2 + \text{cross terms} = n^2 - 2nk + k^2$$

The left hand side can be simplified to

$$\sum_{i=1}^{k} (n_i - 1)^2 = \sum_{i=1}^{k} n_i^2 - \sum_{i=1}^{k} 2n_i + k = \sum_{i=1}^{k} n_i^2 - 2n + k$$

Then, we have

$$\sum_{i=1}^{k} n_i^2 \leq n^2 - 2nk + k^2 + 2n - k = n^2 - (k - 1)(2n - k)$$

because all the cross terms are non-negative.
Then, use the result of # 5, we have the number of edges is at most

\[
\sum_{i=1}^{k} C(n_i, 2) = \sum_{i=1}^{k} (n_i - 1)n_i/2 = \frac{1}{2} \sum_{i=1}^{k} n_i^2 - \frac{n}{2}
\]

\[
\leq \frac{n^2 - (k - 1)(2n - k) - n}{2} = \frac{n^2 - 2nk + k^2 + n - k}{2} = \frac{(n - k)(n - k + 1)}{2}
\]

7. (20 points) Use previous result to show that a simple graph with \(n \) vertices is connected if it has more than \(\frac{(n-1)(n-2)}{2} \) edges.

Solution: Notice that the value of \((n - k)(n - k + 1)/2 \) decreases when \(k \) becomes larger.

If a simple graph with \(n \) vertices is not connected, it will contain at least 2 connected components. Therefore, the value of \(k \) in previous problem is \(k \geq 2 \).

Then, there are at most \((n - 2)(n - 2 + 1)/2 \) edges in the graph, which contradicts to the condition that the graph has more than \((n - 1)(n - 2)/2 \) edges.

Therefore, the graph is connected.