1. (5 pts)
 (a) Let a_n be the number of bit strings of length n that contain three consecutive 0s. Find a recurrence relation for a_n.
 (b) What are the initial conditions?
 (c) How many bit strings of length seven contain three consecutive 0’s?

2. (6 pts) Solve these recurrence relations with the initial conditions given.
 (a) $a_n = 6a_{n-1} - 8a_{n-2}$ for $n \geq 2$, $a_0 = 4$, $a_1 = 10$
 (b) $a_n = -6a_{n-1} - 9a_{n-2}$ for $n \geq 2$, $a_0 = 3$, $a_1 = -3$

3. (6 pts)
 (a) Find all solutions of the recurrence $a_n = -5a_{n-1} - 6a_{n-2} + 42 \cdot 4^n$.
 (b) Find the solution of this recurrence relation with $a_1 = 56$ and $a_2 = 278$.

4. (3 pts) Find $f(n)$ when $n = 3^k$, where f satisfies the recurrence relation $f(n) = 2f(n/3) + 4$ with $f(1) = 1$. (Hint: use Theorem 1 from Section 8.3).

5. (4 pts) A simple graph is a graph in which each edge connects two different vertices and no two edges connect the same pair of vertices. Show that in a simple graph with at least two nodes, there must be two nodes that have the same degree.

6. (6 pts) Let G be a graph with n nodes and e edges. Let M be the maximum degree of the nodes and m be the minimum degree of the nodes.
 (a) Show $2e/n \geq m$
 (b) Show $2e/n \leq M$