Chap 4.3 - Primes

Definition: A positive integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called *composite*.

Example: The integer 7 is prime because its only positive factors are 1 and 7, but 9 is composite because it is divisible by 3.

The Fundamental Theorem of Arithmetic

Theorem: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:
- $105 = $
- $641 = $
- $221 = $
- $1024 = $
The Fundamental Theorem of Arithmetic

Theorem: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:
- $105 = 3 \cdot 5 \cdot 7$
- $641 = 641$
- $221 = 13 \cdot 17$
- $1024 = 2 \cdot 2 = 2^{10}$

The Sieve of Erastosthenes

Erastosthenes (276-194 B.C.)

- The *Sieve of Erastosthenes* can be used to find all primes not exceeding a specified positive integer. For example, begin with the list of integers between 1 and 100.
 a. Delete all the integers, other than 2, divisible by 2.
 b. Delete all the integers, other than 3, divisible by 3.
 c. Next, delete all the integers, other than 5, divisible by 5.
 d. Next, delete all the integers, other than 7, divisible by 7.
 e. Since all the remaining integers are not divisible by any of the previous integers, other than 1, the primes are: continued →

TABLE 1 The Sieve of Erastosthenes

<table>
<thead>
<tr>
<th>Integers divisible by 2 other than 2 receive an underline.</th>
<th>Integers divisible by 3 other than 3 receive an underline.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>11 12 13 14 15 16 17 18 19 20</td>
<td>11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27 28 29 30</td>
<td>21 22 23 24 25 26 27 28 29 30</td>
</tr>
<tr>
<td>31 32 33 34 35 36 37 38 39 40</td>
<td>31 32 33 34 35 36 37 38 39 40</td>
</tr>
<tr>
<td>41 42 43 44 45 46 47 48 49 50</td>
<td>41 42 43 44 45 46 47 48 49 50</td>
</tr>
<tr>
<td>51 52 53 54 55 56 57 58 59 60</td>
<td>51 52 53 54 55 56 57 58 59 60</td>
</tr>
<tr>
<td>61 62 63 64 65 66 67 68 69 70</td>
<td>61 62 63 64 65 66 67 68 69 70</td>
</tr>
<tr>
<td>71 72 73 74 75 76 77 78 79 80</td>
<td>71 72 73 74 75 76 77 78 79 80</td>
</tr>
<tr>
<td>81 82 83 84 85 86 87 88 89 90</td>
<td>81 82 83 84 85 86 87 88 89 90</td>
</tr>
<tr>
<td>91 92 93 94 95 96 97 98 99 100</td>
<td>91 92 93 94 95 96 97 98 99 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integers divisible by 5 other than 5 receive an underline.</th>
<th>Integers divisible by 7 other than 7 receive an underline; integers in color are prime.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>11 12 13 14 15 16 17 18 19 20</td>
<td>11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27 28 29 30</td>
<td>21 22 23 24 25 26 27 28 29 30</td>
</tr>
<tr>
<td>31 32 33 34 35 36 37 38 39 40</td>
<td>31 32 33 34 35 36 37 38 39 40</td>
</tr>
<tr>
<td>41 42 43 44 45 46 47 48 49 50</td>
<td>41 42 43 44 45 46 47 48 49 50</td>
</tr>
<tr>
<td>51 52 53 54 55 56 57 58 59 60</td>
<td>51 52 53 54 55 56 57 58 59 60</td>
</tr>
<tr>
<td>61 62 63 64 65 66 67 68 69 70</td>
<td>61 62 63 64 65 66 67 68 69 70</td>
</tr>
<tr>
<td>71 72 73 74 75 76 77 78 79 80</td>
<td>71 72 73 74 75 76 77 78 79 80</td>
</tr>
<tr>
<td>81 82 83 84 85 86 87 88 89 90</td>
<td>81 82 83 84 85 86 87 88 89 90</td>
</tr>
<tr>
<td>91 92 93 94 95 96 97 98 99 100</td>
<td>91 92 93 94 95 96 97 98 99 100</td>
</tr>
</tbody>
</table>

The Sieve of Erastosthenes

If an integer n is a composite integer, then it has a prime divisor less than or equal to \sqrt{n}.

To see this, note that if $n = ab$, then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

Trial division, a very inefficient method of determining if a number n is prime, is to try every integer $i \leq \sqrt{n}$ and see if n is divisible by i.

In previous example, why did we use only 2, 3, 5 and 7?
Theorem: There are infinitely many primes. (Euclid)

Proof: Assume finitely many primes: \(p_1, p_2, \ldots, p_n \)
- Let \(q = p_1p_2\cdots p_n + 1 \)
- Either \(q \) is prime or by the fundamental theorem of arithmetic it is a product of primes.
 - But none of the primes \(p_j \) divides \(q \) since if \(p_j | q \), then \(p_j \) divides \(q - p_1p_2\cdots p_n = 1 \).
 - Hence, there is a prime not on the list \(p_1, p_2, \ldots, p_n \). It is either \(q \), or if \(q \) is composite, it is a prime factor of \(q \).
 - This contradicts the assumption that \(p_1, p_2, \ldots, p_n \) are all the primes.
- Consequently, there are infinitely many primes.

This proof was given by Euclid *The Elements*. The proof is considered to be one of the most beautiful in all mathematics. It is the first proof in *The Book*, inspired by the famous mathematician Paul Erdős’ imagined collection of perfect proofs maintained by God.

Mersenne Primes

Definition: Prime numbers of the form \(2^p - 1 \), where \(p \) is prime, are called Mersenne primes.
- \(2^2 - 1 = 3 \), \(2^3 - 1 = 7 \), \(2^5 - 1 = 37 \), and \(2^7 - 1 = 127 \) are Mersenne primes.
- \(2^{11} - 1 = 2047 \) is not a Mersenne prime since 2047 = 23·89.
- There is an efficient test for determining if \(2^p - 1 \) is prime.
- The largest known prime numbers are Mersenne primes.
- As of mid 2011, 47 Mersenne primes were known, the largest is \(2^{43,112,609} - 1 \), which has nearly 13 million decimal digits.
- The *Great Internet Mersenne Prime Search (GIMPS)* is a distributed computing project to search for new Mersenne Primes.

http://www.mersenne.org/

Distribution of Primes

- Mathematicians have been interested in the distribution of prime numbers among the positive integers. In the nineteenth century, the *prime number theorem* was proved which gives an asymptotic estimate for the number of primes not exceeding \(x \).

Prime Number Theorem: The ratio of the number of primes not exceeding \(x \) and \(x/\ln x \) approaches 1 as \(x \) grows without bound. (\(\ln x \) is the natural logarithm of \(x \))
- The theorem tells us that the number of primes not exceeding \(x \), can be approximated by \(x/\ln x \).
- The odds that a randomly selected positive integer less than \(n \) is prime are approximately \((n/\ln n)/n = 1/\ln n \).

Generating Primes

- Finding large primes with hundreds of digits is important in cryptography.
- There is no simple function \(f(n) \) such that \(f(n) \) is prime for all positive integers \(n \).
- Consider
 - \(f(n) = n^2 - n + 41 \) is prime for all integers \(1, 2, \ldots, 40 \).
 - But \(f(41) = 41^2 \) is not prime.
- Fortunately, we can generate large integers which are almost certainly primes. See Chapter 7.
Conjectures about Primes

Many conjectures about them are unresolved, including:

- **Goldbach’s Conjecture**: Every even integer \(n, n > 2 \), is the sum of two primes. It has been verified by computer for all positive even integers up to \(1.6 \cdot 10^{18} \). The conjecture is believed to be true by most mathematicians.

- There are infinitely many primes of the form \(n^2 + 1 \), where \(n \) is a positive integer. But it has been shown that there are infinitely many primes of the form \(n^2 + 1 \), where \(n \) is a positive integer or the product of at most two primes.

- **The Twin Prime Conjecture**: The twin prime conjecture is that there are infinitely many pairs of twin primes. Twin primes are pairs of primes that differ by 2. Examples are 3 and 5, 5 and 7, 11 and 13, etc. The current world’s record for twin primes (as of mid 2011) consists of numbers 65,516,468,355·2\(^{33,333} \) ±1, which have 100,355 decimal digits.

Greatest Common Divisor

Definition: Let \(a \) and \(b \) be integers, not both zero. The largest integer \(d \) such that \(d \mid a \) and also \(d \mid b \) is called the greatest common divisor of \(a \) and \(b \). The greatest common divisor of \(a \) and \(b \) is denoted by \(\gcd(a,b) \).

One can find greatest common divisors of small numbers by inspection.

Example: What is the greatest common divisor of 24 and 36?

Example: What is the greatest common divisor of 17 and 22?

Greatest Common Divisor

Definition: The integers \(a \) and \(b \) are relatively prime if their greatest common divisor is 1.

Example: 17 and 22

Definition: The integers \(a_1, a_2, \ldots, a_n \) are pairwise relatively prime if \(\gcd(a_i, a_j) = 1 \) whenever \(1 \leq i < j \leq n \).

Example: Determine whether the integers 10, 17 and 21 are pairwise relatively prime.

Solution:

Example: Determine whether the integers 10, 19, and 24 are pairwise relatively prime.

Solution:

Example: What is the greatest common divisor of 17 and 22?

Solution: \(\gcd(17,22) = 1 \)
Greatest Common Divisor

Definition: The integers \(a \) and \(b \) are relatively prime if their greatest common divisor is 1.

Example: 17 and 22
\[
\text{gcd}(17, 22) = 1
\]

Definition: The integers \(a_1, a_2, \ldots, a_n \) are pairwise relatively prime if gcd\((a_i, a_j) = 1\) whenever \(1 \leq i < j \leq n \).

Example: Determine whether the integers 10, 17 and 21 are pairwise relatively prime.

Solution: Because gcd\((10, 17) = 1\), gcd\((10, 21) = 1\), and gcd\((17, 21) = 1\), 10, 17, and 21 are pairwise relatively prime.

Example: Determine whether the integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd\((10, 24) = 2\), 10, 19, and 24 are not pairwise relatively prime.

Finding the Greatest Common Divisor Using Prime Factorizations

- Suppose the prime factorizations of \(a \) and \(b \) are:
 \[
a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \quad b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n},
\]
 where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both. Then:
 \[
 \text{gcd}(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)}
 \]
 This formula is valid since the integer on the right (of the equals sign) divides both \(a \) and \(b \). No larger integer can divide both \(a \) and \(b \).

Example: 120 = \(2^3 \cdot 3 \cdot 5 \) 500 = \(2^2 \cdot 5^3 \)
\[
\text{gcd}(120, 500) =
\]
- Finding the gcd of two positive integers using their prime factorizations is not efficient because there is no efficient algorithm for finding the prime factorization of a positive integer.

Least Common Multiple

Definition: The least common multiple of the positive integers \(a \) and \(b \) is the smallest positive integer that is divisible by both \(a \) and \(b \). It is denoted by lcm\((a, b)\).

- The least common multiple can also be computed from the prime factorizations.
 \[
 \text{lcm}(a, b) = p_1^{\max(a_1, b_1)} p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}
 \]
 This number is divided by both \(a \) and \(b \) and no smaller number is divided by \(a \) and \(b \).

Example: 120 = \(2^3 \cdot 3 \cdot 5 \)
\[
500 = 2^2 \cdot 5^3
\]
\[
\text{gcd}(120, 500) = 2^2 \cdot 5^0 = 20
\]
- Finding the gcd of two positive integers using their prime factorizations is not efficient because there is no efficient algorithm for finding the prime factorization of a positive integer.
Least Common Multiple

Example: \(\text{lcm}(30, 35) = \)

\[
5 \cdot 2 \cdot 3, 7 \cdot 5 \\
5 \cdot 2 \cdot 3 \cdot 7 = 210
\]

Example: \(\text{lcm}(2^{3}3^{5}7^{2}, \ 2^{4}3^{3}) = \)

\[
2^{\max(3,4)} \ 3^{\max(5,3)} \ 7^{\max(2,0)} = 2^{4} \ 3^{5} \ 7^{2}
\]

LCM and GCD relation

Theorem 5: Let \(a \) and \(b \) be positive integers. Then \(ab = \gcd(a,b) \cdot \text{lcm}(a,b) \)

Example: \(\gcd(20, 15) \cdot \text{lcm}(20, 15) \)

\[
= (5^{1} \cdot 2^{0}) \cdot (5^{1}3^{1}2^{2}) = (5) \cdot (60) \\
= 300 \\
= 20 \cdot 15
\]

Proof:
Note that \(\min(x,y) + \max(x,y) = x + y \)
one uses the larger exponent and the other one the smaller exponent, but you get all factors back.
Euclidean Algorithm

The Euclidean algorithm is an efficient method for computing the greatest common divisor of two integers. It is based on the idea that \(\gcd(a, b) \) is equal to \(\gcd(c, b) \) when \(a > b \) and \(c \) is the remainder when \(a \) is divided by \(b \).

Example: Find \(\gcd(91, 287) \):

\[
\begin{align*}
287 &= 91 \cdot 3 + 14 & \text{Divide 287 by 91} \\
91 &= 14 \cdot 6 + 7 & \text{Divide 91 by 14} \\
14 &= 7 \cdot 2 + 0 & \text{Divide 14 by 7}
\end{align*}
\]

\(\gcd(287, 91) = \gcd(91, 14) = \gcd(14, 7) = 7 \)

Correctness of Euclidean Algorithm

Lemma 1: Let \(a = bq + r \), where \(a, b, q, \) and \(r \) are integers. Then \(\gcd(a, b) = \gcd(b, r) \).

Proof:

- Suppose that \(d \) divides both \(a \) and \(b \).
 - Then \(d \) also divides \(bq + r \).
 - Therefore, \(\gcd(a, b) = \gcd(b, r) \).

- Suppose that \(d \) divides both \(b \) and \(r \).
 - Then \(d \) also divides \(a \).

- Therefore, \(\gcd(a, b) = \gcd(b, r) \).

Euclidean Algorithm

The Euclidean algorithm expressed in pseudocode is:

```
procedure gcd(a, b: positive integers)
    x := a
    y := b
    while y ≠ 0
        r := x mod y
        x := y
        y := r
    return x {gcd(a, b) is x}
```

Correctness of Euclidean Algorithm

Lemma 1: Let \(a = bq + r \), where \(a, b, q, \) and \(r \) are integers. Then \(\gcd(a, b) = \gcd(b, r) \).

Proof:

- Suppose that \(d \) divides both \(a \) and \(b \).
 - Then \(d \) also divides \(a - bq = r \) (by Theorem 1 of Section 4.1). Hence, any common divisor of \(a \) and \(b \) must also be any common divisor of \(b \) and \(r \).
- Suppose that \(d \) divides both \(b \) and \(r \).
 - Then \(d \) also divides \(bq + r = a \). Hence, any common divisor of \(a \) and \(b \) must also be a common divisor of \(b \) and \(r \).
- Therefore, \(\gcd(a, b) = \gcd(b, r) \).
Correctness of Euclidean Algorithm

- Suppose that \(a\) and \(b\) are positive integers with \(a \geq b\).
- Let \(r_0 = a\) and \(r_1 = b\).

Successive applications of the division algorithm yields:

\[
\begin{align*}
 r_{n-2} &= r_{n-1}q_{n-2} + r_{n-3} \\
 r_{n-1} &= r_nq_n.
\end{align*}
\]

Eventually, a remainder of zero occurs in the sequence of terms: \(a = r_0 > r_1 > r_2 > \cdots \geq 0\). The sequence can’t contain more than \(a\) terms.

By Lemma 1:
\[
\gcd(a, b) = \gcd(r_0, r_1) = \cdots = \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = r_n.
\]

Hence the greatest common divisor is the last nonzero remainder in the sequence of divisions.

Étienne Bézout (1730-1783)

Bézout’s Theorem: If \(a\) and \(b\) are positive integers, then there exist integers \(s\) and \(t\) such that \(\gcd(a, b) = sa + tb\).

(proof in exercises of Section 5.2)

Definition: If \(a\) and \(b\) are positive integers, then integers \(s\) and \(t\) such that \(\gcd(a, b) = sa + tb\) are called Bézout coefficients of \(a\) and \(b\). The equation \(\gcd(a, b) = sa + tb\) is called Bézout’s identity.

- By Bézout’s Theorem, the gcd of integers \(a\) and \(b\) can be expressed in the form \(sa + tb\) where \(s\) and \(t\) are integers. This is a linear combination with integer coefficients of \(a\) and \(b\).
 - \(\gcd(6,14) = 2\)
 \[
 = 2 = (-2) \cdot 6 + 1 \cdot 14
 \]

Étienne Bézout (1730-1783)

Bézout’s Theorem: If \(a\) and \(b\) are positive integers, then there exist integers \(s\) and \(t\) such that \(\gcd(a, b) = sa + tb\).

(proof in exercises of Section 5.2)

Definition: If \(a\) and \(b\) are positive integers, then integers \(s\) and \(t\) such that \(\gcd(a, b) = sa + tb\) are called Bézout coefficients of \(a\) and \(b\). The equation \(\gcd(a, b) = sa + tb\) is called Bézout’s identity.

- By Bézout’s Theorem, the gcd of integers \(a\) and \(b\) can be expressed in the form \(sa + tb\) where \(s\) and \(t\) are integers. This is a linear combination with integer coefficients of \(a\) and \(b\).
 - \(\gcd(6,14) = 2\)
 \[
 = 2 = (-2) \cdot 6 + 1 \cdot 14
 \]
Finding gcds as Linear Combinations

Example: Express \(\gcd(252, 198) = 18 \) as a linear combination of 252 and 198.

Solution: First use the Euclidean algorithm to show \(\gcd(252, 198) = 18 \)

- Now working backwards, from iii and i above

- Substituting the 2nd equation into the 1st yields:

- Substituting 54 = 252 − 1 \cdot 198 (from i)) yields:

• This method illustrated above is a two pass method. It first uses the Euclidian algorithm to find the gcd and then works backwards to express the gcd as a linear combination of the original two integers.

Consequences of Bézout’s Theorem

Lemma 2: If \(a, b, \) and \(c \) are positive integers such that \(\gcd(a, b) = 1 \) and \(a \mid bc \), then \(a \mid c \).

Proof: Assume \(\gcd(a, b) = 1 \) and \(a \mid bc \)

- Since \(\gcd(a, b) = 1 \), by Bézout’s Theorem there are integers \(s \) and \(t \) such that \(sa + tb = 1 \).

Lemma 3: If \(p \) is prime and \(p \mid a_1 a_2 \cdots a_n \), then \(p \mid a_i \) for some \(i \).

(proof uses mathematical induction; see Exercise 64 of Section 5.1)

• Lemma 3 is crucial in the proof of the uniqueness of prime factorizations.

Consequences of Bézout’s Theorem

Lemma 2: If \(a, b, \) and \(c \) are positive integers such that \(\gcd(a, b) = 1 \) and \(a \mid bc \), then \(a \mid c \).

Proof: Assume \(\gcd(a, b) = 1 \) and \(a \mid bc \)

- Since \(\gcd(a, b) = 1 \), by Bézout’s Theorem there are integers \(s \) and \(t \) such that \(sa + tb = 1 \).

- Multiplying both sides of the equation by \(c \), yields \(sac + tbc = c \).

- From Theorem 1 of Section 4.1:

 a \mid tbc \quad \text{(part ii)} \quad \text{and} \quad a \text{ divides } sac + tbc \quad \text{since} \quad a \mid sac \text{ and } a \mid tbc \quad \text{(part i)}

- We conclude \(a \mid c \), since \(sac + tbc = c \).

Lemma 3: If \(p \) is prime and \(p \mid a_1 a_2 \cdots a_n \), then \(p \mid a_i \) for some \(i \).

(proof uses mathematical induction; see Exercise 64 of Section 5.1)

• Lemma 3 is crucial in the proof of the uniqueness of prime factorizations.
Uniqueness of Prime Factorization

• We will prove that a prime factorization of a positive integer where the primes are in nondecreasing order is unique. (This is part of the fundamental theorem of arithmetic. The other part, which asserts that every positive integer has a prime factorization into primes, will be proved in Section 5.2.)

Proof: (by contradiction) Suppose that the positive integer \(n \) can be written as a product of primes in two distinct ways:

\[n = p_1 p_2 \cdots p_k \quad \text{and} \quad n = q_1 q_2 \cdots q_r. \]

– Remove all common primes from the factorizations to get

\[p_{i_1} p_{i_2} \cdots p_{i_k} = q_{j_1} q_{j_2} \cdots q_{j_r}. \]

– By Lemma 3, it follows that \(p_{i_k} \) divides \(q_{j_k} \), for some \(k \), contradicting the assumption that \(p_{i_k} \) and \(q_{j_k} \) are distinct primes.

– Hence, there can be at most one factorization of \(n \) into primes in nondecreasing order.

Dividing Congruences by an Integer

• Dividing both sides of a valid congruence by an integer does not always produce a valid congruence (see Section 4.1).

• But dividing by an integer relatively prime to the modulus does produce a valid congruence:

Theorem 7: Let \(m \) be a positive integer and let \(a, b, \) and \(c \) be integers. If \(ac \equiv bc \pmod{m} \) and \(\gcd(c,m) = 1 \), then \(a \equiv b \pmod{m} \).

Proof:

Chap 4.4 - Linear Congruences

Definition: A congruence of the form

\[ax \equiv b \pmod{m}, \]

where \(m \) is a positive integer, \(a \) and \(b \) are integers, and \(x \) is a variable, is called a linear congruence.

• The solutions to a linear congruence \(ax \equiv b \pmod{m} \) are all integers \(x \) that satisfy the congruence.

Definition: An integer \(\bar{a} \) such that \(\bar{a}a \equiv 1 \pmod{m} \) is said to be an inverse of \(a \) modulo \(m \).

Example: What is the inverse of 3 modulo 7?

• One method of solving linear congruences makes use of an inverse \(\bar{a} \), if it exists. Although we can not divide both sides of the congruence by \(a \), we can multiply by \(\bar{a} \) to solve for \(x \).
Chap 4.4 - Linear Congruences

Definition: A congruence of the form

\[ax \equiv b \pmod{m} \]

where \(m \) is a positive integer, \(a \) and \(b \) are integers, and \(x \) is a variable, is called a linear congruence.

- The solutions to a linear congruence \(ax \equiv b \pmod{m} \) are all integers \(x \) that satisfy the congruence.

Definition: An integer \(\tilde{a} \) such that \(\tilde{a}a \equiv 1 \pmod{m} \) is said to be an inverse of \(a \) modulo \(m \).

Example: What is the inverse of 3 modulo 7?

5 is an inverse of 3 modulo 7 since \(5 \times 3 = 15 \equiv 1 \pmod{7} \)

- One method of solving linear congruences makes use of an inverse \(\tilde{a} \), if it exists. Although we cannot divide both sides of the congruence by \(a \), we can multiply by \(\tilde{a} \) to solve for \(x \).

Inverse of \(a \) modulo \(m \)

- The following theorem guarantees that an inverse of \(a \) modulo \(m \) exists whenever \(a \) and \(m \) are relatively prime. Two integers \(a \) and \(b \) are relatively prime when \(\gcd(a,b) = 1 \).

Theorem 1: If \(a \) and \(m \) are relatively prime integers and \(m > 1 \), then an inverse of \(a \) modulo \(m \) exists. Furthermore, this inverse is unique modulo \(m \). (This means that there is a unique positive integer \(\bar{a} \) less than \(m \) that is an inverse of \(a \) modulo \(m \) and every other inverse of \(a \) modulo \(m \) is congruent to \(\bar{a} \) modulo \(m \).)

Proof: Since \(\gcd(a,m) = 1 \), by Theorem 6 of Section 4.3, there are integers \(s \) and \(t \) such that \(sa + tm = 1 \).

Finding Inverses

- The Euclidean algorithm and Bézout coefficients give us a systematic approach to finding inverses.

Example: Find an inverse of 3 modulo 7.

Solution: Because \(\gcd(3,7) = 1 \), by Theorem 1, an inverse of 3 modulo 7 exists.

- Using the Euclidian algorithm to find \(\gcd \): \(7 = 2 \times 3 + 1 \).
- From this equation, we get \(-2 \times 3 + 1 \times 7 = 1 \), and see that \(-2 \) and 1 are Bézout coefficients of 3 and 7.
- Hence, \(-2\) is an inverse of 3 modulo 7.
- Also every integer congruent to \(-2\) modulo 7 is an inverse of 3 modulo 7, i.e., 5, \(-9\), 12, etc.
Finding Inverses

Example: Find an inverse of 101 modulo 4620.

Solution: First use the Euclidian algorithm to show that gcd(101, 4620) = 1.

Working Backwards:

4620 = 45·101 + 75
101 = 1·75 + 26
75 = 2·26 + 23
26 = 1·23 + 3
23 = 7·3 + 2
3 = 1·2 + 1
2 = 2·1

Since the last nonzero remainder is 1, gcd(101, 4620) = 1

Bézout coefficients: −35 and 1601

1601 is an inverse of 101 modulo 4620