Recurrence Relations
- model lots of problems
 • The Tower of Hanoi
 • Divide and conquer algorithms
 – Sorting algorithm mergesort
 – Sorting algorithm quicksort
 • Tree algorithms
 – Searching for an element in a binary search tree
 – Listing out all elements in a binary search tree

Solving a recurrence relation
 • Problem sets up as a recurrence
 – Must have a base case
 • Solve the recurrence
 – Use substitution
 • Prove correctness
 – Proof by induction
Example 1

• $a_n = a_{n-1} + c$
• $a_0 = 1$

• Solve recurrence
• Then prove true by induction
• What is this an example of?

Worst case binary search tree

Example 2

• $a_n = 2*a_{n-1} + c$
• $a_0 = 0$

• Solve recurrence
• Then prove true by induction
• What is this an example of?

Towers of Hanoi

• Figures
 – Figs 1-4
 • problem size n-1
 – Figs 4-5
 • Constant work
 – Figs 5-7
 • problem size n-1
Example 3

- \(a_n = 2a_{n/2} + c \)
- \(a_1 = c \)

Solve recurrence
Then prove true by induction
What is this an example of?

Traversal in binary search tree
preorder, postorder, inorder

Example 4

- \(a_n = 2a_{n/2} + cn \)
- \(a_1 = c \)

Solve recurrence
Then prove true by induction
What is this an example of?

MergeSort

- \(n \log n \)
Definition

- A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form
- \[a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} \]
- Where \(c_i \) are real numbers and \(c_k \neq 0 \)

Theorem

- Let \(c_1 \) and \(c_2 \) be real numbers. Suppose that \(r^2 - c_1 r - c_2 = 0 \) has two distinct roots \(r_1 \) and \(r_2 \). Then the sequence \(\{a_n\} \) is a solution of the recurrence
 \[a_n = c_1 a_{n-1} + c_2 a_{n-2} \]
 if and only if
 \[a_n = \alpha_1 r_1^n + \alpha_2 r_2^n \]
 for all \(n \) where \(\alpha_1 \) and \(\alpha_2 \) are constants

Example

- What is the solution to the recurrence relation \(a_n = a_{n-1} + 2a_{n-2} \) with \(a_0 = 2 \) and \(a_1 = 7 \)

Many other theorems

- See theorems 2-6 in Chapter 8.2
Theorem 1 in 8.3

Let \(f \) be an increasing function that satisfies the recurrence relation

\[
f(n) = a f(n/b) + c
\]

whenever \(n \) is divisible by \(b \), where \(a \geq 1 \), \(b \) is an integer greater than 1, and \(c \) is a positive real number. Then

\[
f(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } a > 1, \\
O(\log n) & \text{if } a = 1.
\end{cases}
\]

Furthermore, when \(n = b^k \) and \(a \neq 1 \), where \(k \) is a positive integer,

\[
f(n) = C_1 n^{\log_b a} + C_2,
\]

where \(C_1 = f(1) + c/(a - 1) \) and \(C_2 = -c/(a - 1) \).

Master Theorem in 8.3

MASTER THEOREM Let \(f \) be an increasing function that satisfies the recurrence relation

\[
f(n) = a f(n/b) + cn^d
\]

whenever \(n = b^k \), where \(k \) is a positive integer, \(a \geq 1 \), \(b \) is an integer greater than 1, and \(c \) and \(d \) are real numbers with \(c \) positive and \(d \) nonnegative. Then

\[
f(n) = \begin{cases}
O(n^d) & \text{if } a < b^d, \\
O(n^d \log n) & \text{if } a = b^d, \\
O(n^{\log_b a}) & \text{if } a > b^d.
\end{cases}
\]