1. (12 pts) Complete or answer the following.

\[L_1 = \{a, d\}, \Sigma = \{a, d\} \]
\[L_2 = \{b\}, \Sigma = \{b\} \]
\[L_3 = a(b(a + b)), \Sigma = \{a, b\} \]
\[L_4 = b^*a^*, \Sigma = \{a, b\} \]
\[L_5 = \{w \in \Sigma^* | n_a(w) = n_b(w)\}, \Sigma = \{a, b\} \]

(a) \(L_1 \cap L_2 = \emptyset \)

(b) \(L_1 - L_2 = \emptyset \)

(c) \(L_3 \circ L_4 = a(b(a + b))b^*a^* \)

(d) \(L_4 \cap L_5 = \emptyset \)

(e) \(L_2 \times L_2 = \emptyset \)

(f) \(2^{L_1} = \emptyset \)

2. (22 pts) Answer TRUE or FALSE to each of the statements below.

(a) If \(M \) is a DFA that has only one cycle, which is of length 1, then \(L(M) \) is an infinite language. (TRUE or FALSE?) \(\text{TRUE} \)

(b) If \(M \) is an NPDA with some transitions that push three or more symbols on the stack, then there exists an NPDA \(M' \) such that all of \(M \)'s transitions push only 0, 1, or 2 symbols on the stack, and \(L(M) = L(M') \). (TRUE or FALSE?) \(\text{TRUE} \)

(c) If \(M \) is an NPDA that has at most two stack symbols, then there exists a regular grammar \(G \) such that \(L(M) = L(G) \). (TRUE or FALSE?) \(\text{FALSE} \)

(d) Consider a CFG \(G \) and the parse tree for a string in \(L(G) \). All non-leaf nodes in the parse tree are variables from the grammar. (TRUE or FALSE?) \(\text{TRUE} \)
(e) If \(R \) is a regular expression, then there exists an NPDA \(M \) such that \(L(R) = L(M) \). (TRUE or FALSE?) \(\text{TRUE} \)

(f) Consider the following statement involving regular expressions.
\[a^* (b + a)^* = (a + b)^* \] (TRUE or FALSE?) \(\text{TRUE} \)

(g) The following grammar \(G \) is a regular grammar. (TRUE or FALSE?) \(\text{TRUE} \)

\[
S \rightarrow Sa \mid Bba \mid d \\
B \rightarrow Sb \mid \lambda
\]

(h) \(L = \{a^n c^m \mid n > 0, m > 0\} \), \(\Sigma = \{a, c\} \). \(L \) is regular. (TRUE or FALSE?) \(\text{TRUE} \)

(i) \(L = \{w \in \Sigma^* \mid n_a(w) < n_b(w) + 10\} \), \(\Sigma = \{a, b\} \). \(L \) is regular. (TRUE or FALSE?) \(\text{FALSE} \)

(j) \(L = \{a^n b^p c^q \mid n > p, q > p, p > 0\} \), \(\Sigma = \{a, b, c\} \). \(L \) is regular. (TRUE or FALSE?) \(\text{FALSE} \)

(k) \(L = \{w \in \Sigma^* \mid n_a(w) \text{ is odd and } abc \text{ is not a substring}\} \), \(\Sigma = \{a, b, c\} \). \(L \) is regular. (TRUE or FALSE?) \(\text{TRUE} \)

3. (4 pts) Consider the following definition related to NPDA's.

\[
L(M) = \{w \in \Sigma^* \mid (q_0, w, z) \vdash (p, \lambda, \lambda)\}
\]

(a) Explain the general idea of what this definition means in words.
This is the definition of acceptance by empty stack. The string \(w \) is accepted after all symbols have been seen and the stack is empty.

(b) Explain these parts of the definition: \((q_0, w, z) \vdash (p, \lambda, \lambda) \)

Starting in state \(q_0 \) with string \(w \) on the tape and \(z \) on the stack, after 0 or more transitions, all symbols in \(w \) have been processed and the stack is empty and the current state is some state \(p \).
4. (4 pts) Consider the following grammar.

\[S \rightarrow aSS \mid Sb \mid a \mid \lambda \]

A) Give a left-most derivation for the string \(abba \).

\[S \rightarrow aSS \rightarrow aSbS \rightarrow a\underline{S}b \underline{S} \rightarrow a\underline{b} \underline{b} S \rightarrow abba \]

B) Give a parse tree for the string \(abba \).

5. (5 pts) Write a CFG \(G \) for the following language:

\(L = \{a^n b^p c^q \mid n > p + q, p \geq 0, q > 0\} \), \(\Sigma = \{a, b, c\} \).

\[S \rightarrow aSc \mid aBc \]

\[B \rightarrow aBb \mid aC \]

\[C \rightarrow aC \mid \lambda \]
6. (8 pts) Draw a DFA for the following language. You do not have to show trap states (show the transition diagram, indicate the start state by a short arrow, and final states by double circles.)

\[L = \{ w \in \Sigma^* | n_a(w) \text{ is even and } n_b(w) \mod 3 = 2 \}, \Sigma = \{a, b\}. \]

For example, \(bbbaa \), \(bbbbbb \) and \(bababbaab \) are in \(L \).
7. (6 pts) Consider the following DFA.

![DFA Diagram]

a) Show states q_0 and q_2 are distinguishable with an appropriate string. Explain.

$ab \quad \delta(q_0, ab) = q_5 \quad \delta(q_2, ab) = q_3$

q_5 is a final state q_3 is a non-final state

b) Give the states in the minimal state DFA (you do not need to show the arcs). Each state should indicate which states it represents from the original DFA. For example you could list one state as 0,1,2 if states 0, 1 and 2 in the original DFA can be combined to form a state in the minimal state DFA.

![Minimal DFA Diagram]
8. (10 pts) Consider $L = \{a^n b^p c^q \mid n > p + q, p \geq 0, q > 0\}$, $\Sigma = \{a, b, c\}$. Draw the transition diagram for a nondeterministic pushdown automaton M that accepts L by final state. (Remember to identify the start state by an arrow and final states by double circles. Format of labels are $a, b; cd$ where a is the symbol on the tape, b is the symbol on top of the stack that is popped, and cd are pushed onto the stack (with c on top of d). Z is on top of the stack when M starts.)

(a) First list 3 strings in L.
 $aac, aaabc, aaaaabc$

(b) Now draw the transition diagram.

You don't have to pop items off at the end.
9. (6 pts) **Pumping Lemma:** Let L be an infinite regular language. \(\exists \) a constant \(m > 0 \) such that any \(w \in L \) with \(|w| \geq m \) can be decomposed into three parts as \(w = xyz \) with

\[
\begin{align*}
|xy| &\leq m, \\
|y| &\geq 1, \\
x y^i z &\in L \quad \text{for all} \ i \geq 0
\end{align*}
\]

Use the Pumping Lemma to prove the language \(L \) below is not regular.

\(L = \{a^n b^p c^q \mid n > p + q, p > 0, q \geq 0\} \), \(\Sigma = \{a, b, c\} \).

Proof: (SHOW ALL STEPS! Some have been started for you.)

Assume \(L \) is regular

Choose \(w = a^{m+1} b^m \)

Show there is no way to partition this string \(w = xyz \) such that the properties of the pumping lemma hold.

\[
\begin{align*}
x &= a^j \\
y &= a^t \\
z &= a^{m+1-j-t} b^m \\
\end{align*}
\]

\(t > 0 \)

\(\gamma = \gamma = a^{m+1-j-t} b^m \)

\(n_a(w) \leq n_b(w) + n_c(w) \)

Contradiction!

\(\Rightarrow L \) is not regular
10. (8 pts) Consider the following property, ReplaceAllWith. If \(L \) is a regular language, then ReplaceAllWith(\(L \)) = strings from \(L \) that have every occurrence of \(aa \) replaced with \(ab \). If there is a string \(w \) in \(L \) that does not have the substring \(aa \) in the string, then that does not put \(w \) in ReplaceAllWith(\(L \)).

For example, if \(aaaa \) is in \(L \), then \(abab \) is in ReplaceAllWith(\(L \)), the second \(a \) of each \(aa \) was replaced by \(b \). If \(bbaaaaaaab \) is in \(L \), then \(bbabababab \) is in ReplaceAllWith(\(L \)), with three \(a \)s (all the second \(a \) of an \(aa \)) replaced with a \(b \).

If \(ab \) is in \(L \), then \(ab \) does not generate a string in ReplaceAllWith(\(L \)).

Prove that ReplaceAllWith(\(L \)) is a regular language.

\[L \text{ is regular. } \exists \text{ DFA } M \text{ for } L. \text{ Make 4 copies of } M \text{ called } M_1, M_2, M_3 \text{ & } M_4. \]

Idea: The first time there is an 'aa', you process the first 'a' into \(M_2 \), then the second 'a' (replacing w/\(ab \)) into \(M_3 \). At that point you can start accepting strings.

In \(M_3 \) every 'a' goes to \(M_4 \) to see if a 'a' follows it (replace with a b) or a b follows it. Both go back to \(M_3 \).

Changes:

1) No final states in \(M_1 \) or \(M_2 \).
2) All 'a' arcs in \(M_1 \) replace with a corresponding state in \(M_2 \).
3) All 'a' arcs in \(M_2 \) replace with 'b' arcs to corresponding state in \(M_3 \).
4) All 'b' arcs in \(M_2 \) replace with a arcs to corresponding state in \(M_1 \).
5) All 'a' arcs in \(M_3 \) replace with 'b' arcs to corresponding state in \(M_4 \).
6) All 'b' arcs in \(M_4 \) replace with 'b' arcs to corresponding state in \(M_5 \).