Section: Transforming grammars
(Ch. 6)

Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let \(G \) be a CFG. Suppose \(G \) contains

\[
A \to x_1Bx_2
\]

where \(A \) and \(B \) are different variables, and \(B \) has the productions

\[
B \to y_1 | y_2 | \ldots | y_n
\]

Then can construct \(G' \) from \(G \) by deleting

\[
A \to x_1Bx_2
\]

from \(P \) and adding to it

\[
A \to x_1y_1x_2|x_1y_2x_2|\ldots|x_1y_nx_2
\]

Then, \(L(G) = L(G') \).
Example:

S → aBa becomes
B → aS | a

Definition: A production of the form
A → Ax, A ∈ V, x ∈ (V ∪ T)* is left recursive.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E+T \mid T \\
T & \rightarrow T*F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

Derivation of \(a+b+a+a\) is:

\[
E \Rightarrow E+T \Rightarrow E+T+T \Rightarrow E+T+T+T \\
\Rightarrow a+T+T+T
\]
Theorem (Removing Left recursion)
Let $G = (V, T, S, P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

$$
A \rightarrow A.x_1 \mid A.x_2 \mid \ldots \mid A.x_n \\
A \rightarrow y_1 | y_2 | \ldots | y_m
$$

where x_i, y_i are in $(V \cup T)^*$. Then $G' = (V \cup \{Z\}, T, S, P')$ and P' replaces rules of form above by

$$
A \rightarrow y_i | y_iZ, \ i=1,2,\ldots,m \\
Z \rightarrow x_i | x_iZ, \ i=1,2,\ldots,n
$$
Example:

\[E \rightarrow E + T | T \]

becomes

\[T \rightarrow T * F | F \]

becomes

Now, Derivation of \(a + b + a + a \) is:
Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or productions s.t. L(G)=L(G’).
To Remove Useless Productions:

Let $G=(V,T,S,P)$.

I. Compute $V_1=\{\text{Variables that can derive strings of terminals}\}$

1. $V_1=\emptyset$

2. Repeat until no more variables added
 - For every $A\in V$ with $A\rightarrow x_1x_2\ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 = $ all productions in P with symbols in $(V_1 \cup T)^*$

Then $G_1=(V_1,T,S,P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G)=L(G')$ and G' has no useless productions.
Example:

\[S \rightarrow aB \mid bA \]
\[A \rightarrow aA \]
\[B \rightarrow Sa \mid b \]
\[C \rightarrow cBc \mid a \]
\[D \rightarrow bCb \]
\[E \rightarrow Aa \mid b \]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists \text{ production } A \rightarrow \lambda \}$

2. Repeat until no more additions
 - if $B \rightarrow A_1 A_2 \ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n

3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1 x_2 \ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.
Example:

\[
\begin{align*}
S & \rightarrow Ab \\
A & \rightarrow BCB \mid Aa \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow cC \mid \lambda
\end{align*}
\]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \rightarrow B \]
\[B \rightarrow a \mid ab \]

But what if we have

\[A \rightarrow B \]
\[B \rightarrow C \]
\[C \rightarrow A \]
Theorem (Remove unit productions)
Let $G=(V,T,S,P)$ be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG $G'=(V',T',S,P')$ that does not have any unit-productions and $L(G)=L(G')$.

To Remove Unit Productions:

1. Find for each A, all B s.t. $A \Rightarrow B$
 (Draw a dependency graph)

2. Construct $G'=(V',T',S,P')$ by

 (a) Put all non-unit productions in P'
 (b) For all $A \Rightarrow B$ s.t. $B \rightarrow y_1|y_2|\ldots y_n \in P'$, put $A \rightarrow y_1|y_2|\ldots y_n \in P'$
Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length \(> 1 \), replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length \(> 2 \) by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CBcd \]
\[B \rightarrow b \]
\[C \rightarrow Cc \mid e \]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots, A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[A_i \rightarrow A_j x_j, \quad j > i \]
\[Z_i \rightarrow A_j x_j, \quad j \leq n \]
\[A_i \rightarrow ax_i \]

where \(a \in T \), \(x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3} \), etc until all productions are in the correct form.