1. Given Turing Machines M_1 and M_2

Notation for

- Run M_1
- Run M_2

$M_1 \rightarrow M_2$

z represents any symbol in M_2.
2. Given Turing Machines M1 and M2

M1

\[S \quad H \]

\[\rightarrow \]

M2

\[S' \quad H' \]

\[\rightarrow \]

\[\rightarrow M1 \xrightarrow{x} M2 \]

\[S \quad H \xrightarrow{x;R,H} z;L \quad S' \quad H' \]

z represents any symbol in x
x is an element of
3. Given Turing Machines M1, M2, and M3

M1

M2

M3

x is an element of
y is any element except x from
z is any element from
More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a, b, c, B\}$

z is any symbol in Γ

x is a specific symbol from Γ

1. s - start
2. R - move right

3. L - move left

4. x - write x (and don’t move)

5. R_a - move right until you see an a
6. \(L_a \) - move left until you see an \(a \)

7. \(R_{\neg a} \) - move right until you see anything that is not an \(a \)

8. \(L_{\neg a} \) - move left until you see anything that is not an \(a \)

9. \(h \) - halt in a final state

10. \(\{a,b\} \rightarrow w \rightarrow \)

 If the current symbol is \(a \) or \(b \), let \(w \) represent the current symbol.
Example

Assume input string \(w \in \Sigma^+ \), \(\Sigma = \{a, b\} \).
If \(|w|\) is odd, then write a \(b \) at the end of the string. The tape head should finish pointing at the leftmost symbol of \(w \).

input: bab, output: babb
input: ba, output: ba

What is the running time?
Example

Assume input string \(w \in \Sigma^+, \Sigma = \{a, b\}, |w| > 0 \)

For each \(a \) in the string, append a \(b \) to the end of the string.

input: \(abbabb \), **output:** \(abbabbbb \)

The tape head should finish pointing at the leftmost symbol of \(w \).
Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function $f: D \rightarrow R$ is a TM M, which given input $d \in D$, halts with answer $f(d) \in R$.

Example: $f(x + y) = x + y$, x and y unary numbers.

\begin{align*}
\text{start with:} & \quad 111 + 1111 \\
\uparrow & \\
\text{end with:} & \quad 1111111 \\
\uparrow &
\end{align*}
Example: Copy a String, \(f(w) = w0w \),
\(w \in \Sigma^* \), \(\Sigma = \{a, b, c\} \)

Denoted by \(C \)

- start with: \(\text{abac} \)
 \[\uparrow \]

- end with: \(\text{abac0abac} \)
 \[\uparrow \]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right).

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

start with: aaBbabc

↑

end with: aaBBbaca

↑
Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

\[
\begin{align*}
\text{start with:} & \quad \text{babcaBba} \\
& \quad \uparrow \\
\text{end with:} & \quad \text{bacaBBba} \\
& \quad \uparrow \\
\end{align*}
\]

(similar to S_R)
Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, $f(x\ast y) = x\ast y$, x and y unary numbers. Assume $x, y > 0$.

start with: $\text{1111} \ast \text{11}$

end with: 11111111