Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Consider the CFG G:

$$
\begin{align*}
S & \rightarrow Aa \\
A & \rightarrow AA \mid ABa \mid \lambda \\
B & \rightarrow BBa \mid b \mid \lambda
\end{align*}
$$

Is ba in $L(G)$? Running time?

New grammar G' is:

$$
\begin{align*}
S & \rightarrow Aa \mid a \\
A & \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B & \rightarrow BBa \mid Ba \mid a \mid b
\end{align*}
$$

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string.

$$S \rightarrow aS \mid b$$

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

Examples: Shift-reduce, Operator-Precedence, LR Parser
The function FIRST:

\[G = (V, T, S, P) \]
\[w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: \(FIRST(w) \) = the set of terminals that begin strings derived from \(w \).

If \(w \Rightarrow^* av \) then

\(a \) is in \(FIRST(w) \)

If \(w \Rightarrow^* \lambda \) then

\(\lambda \) is in \(FIRST(w) \)
To compute FIRST:

1. \text{FIRST}(a) = \{a\}

2. \text{FIRST}(X)

 (a) If $X \rightarrow aw$ then

 \begin{itemize}
 \item a is in FIRST(X)
 \end{itemize}

 (b) IF $X \rightarrow \lambda$ then

 \begin{itemize}
 \item λ is in FIRST(X)
 \end{itemize}

 (c) If $X \rightarrow Aw$ and $\lambda \in \text{FIRST}(A)$ then

 Everything in FIRST(w) is in FIRST(X)
3. In general, FIRST($X_1X_2X_3\ldots X_K$) =

- FIRST(X_1)
- \cup FIRST(X_2) if λ is in FIRST(X_1)
- \cup FIRST(X_3) if λ is in FIRST(X_1) and λ is in FIRST(X_2)
 ...
- \cup FIRST(X_K) if λ is in FIRST(X_1) and λ is in FIRST(X_2) ...
 and λ is in FIRST(X_{K-1})
- $\{-\lambda\}$ if $\lambda \not\in$ FIRST(X_J) for all J
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

\[
\text{FIRST}(B) = \\
\text{FIRST}(S) = \\
\text{FIRST}(Sc) =
\]
Example

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: FOLLOW\((X) \) = set of terminals that can appear to the right of \(X \) in some derivation.

\[
\text{If } S \xrightarrow{*} wAav \text{ then } a \text{ is in FOLLOW}(A)
\]

To compute FOLLOW:

1. $ is in FOLLOW(S)
2. If A \xrightarrow{} wBv and v \neq \lambda \text{ then}
 FIRST(v) - \{\lambda\} \text{ is in FOLLOW(B)}
3. IF A \xrightarrow{} wB OR
 A \xrightarrow{} wBv and \lambda \text{ is in FIRST(v)}
 then
 FOLLOW(A) \text{ is in FOLLOW(B)}
4. \lambda \text{ is never in FOLLOW}
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

FOLLOW(S) =

FOLLOW(B) =
Example:

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}
\]

\[
\begin{align*}
\text{FOLLOW}(S) & = \\
\text{FOLLOW}(A) & = \\
\text{FOLLOW}(B) & = \\
\text{FOLLOW}(C) & = \\
\text{FOLLOW}(D) & = \\
\text{FOLLOW}(E) & =
\end{align*}
\]