What will we do in CPS 140?

Questions

- Can you write a program to determine if a string is an integer?

 9998.89 8abab 789342

- Can you do this if your machine had no additional memory other than the program? (can’t store any values and look at them again)

- Can you write a program to determine if the following are arithmetic expressions?

 \(((34 + 7 \times (18/6)))\)

 \((((((a \times b) + c) \times d(e + f))))\)

- Can you do this if your machine had no additional memory other than the program?

- Can you write a program to determine the value of the following expression?

 \(((34 + 7 \times (18/6)))\)

- Can you write a program to determine if a file is a valid Java program?

- Can you write a program to determine if a Java program given as input will ever halt?

Language Hierarchy
Power of Machines

<table>
<thead>
<tr>
<th>automata</th>
<th>Can do?</th>
<th>Can’t do?</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite automata (FA)</td>
<td>integers</td>
<td>arith expr</td>
</tr>
<tr>
<td>(no memory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pushdown automata (PDA)</td>
<td>arith expr</td>
<td>compute expr</td>
</tr>
<tr>
<td>(only memory is stack)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turing machines (TM)</td>
<td>compute expr</td>
<td>decide if halts</td>
</tr>
<tr>
<td>(infinite memory)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application

Compiler

- Question: Given a Java program - is it valid?
- Question: language L, program P - is P valid?

Stages of a Compiler

C++ program

<table>
<thead>
<tr>
<th>lexical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>tokens</td>
</tr>
<tr>
<td>syntax analysis</td>
</tr>
<tr>
<td>parse tree</td>
</tr>
<tr>
<td>code generation</td>
</tr>
</tbody>
</table>

assembly language program
L-Systems - Model the Growth of Plants

Set Theory - Read Chapter 1 Linz.

A Set is a collection of elements.

\[A = \{1, 4, 6, 8\}, \quad B = \{2, 4, 8\}, \quad C = \{3, 6, 9, 12, \ldots\}, \quad D = \{4, 8, 12, 16, \ldots\}\]

- (union) \(A \cup B = \)
- (intersection) \(A \cap B = \)
- \(C \cap D = \)
- (member of) \(42 \in C? \)
- (subset) \(B \subseteq C? \)
- \(B \cap A \subseteq D? \)
- (product) \(A \times B = \)
- \(|B| = \)
- \(|A \times B| = \)
- \(\emptyset \in B \cap C? \)
- (powerset) \(2^B = \)

Example What are all the subsets of \(\{3, 5\} \)?

How many subsets does a set \(S \) have?

| \(|S| \) | number of subsets |
|-------|------------------|
| 0 | |
| 1 | |
| 2 | |
| 3 | |
| 4 | |

How do you prove? Set \(S \) has \(2^{|S|} \) subsets.
Technique: Proof by Induction

1. Basis: P(1)? Prove smallest instance is true.
2. Induction Hypothesis - I.H.
 Assume P(n) is true for 1,2,...,n
3. Induction Step - I.S.
 Show P(n+1) is true (using I.H.)

Proof of Example:

1. Basis:
2. I.H. Assume
3. I.S. Show

Ch. 1: 3 Major Concepts

- languages
- grammars
- automata

Languages

- Σ - set of symbols, alphabet
- string - finite sequence of symbols
- language - set of strings defined over Σ

Examples

- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $L = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \ldots\}$
- $\Sigma = \{a, b, c\}$
 $L = \{ab, ac, cabb\}$
- $\Sigma = \{a, b\}$
 $L = \{a^n b^n \mid n > 0\}$
Notation

- symbols in alphabet: a, b, c, d, ...
- string names: u, v, w, ...

Definition of concatenation

Let \(w = a_1 a_2 \ldots a_n \) and \(v = b_1 b_2 \ldots b_m \)

Then \(w \circ v \) OR \(wv = \)

See book for formal definitions of other operations.

String Operations

strings: \(w = abbc, v = ab, u = c \)

- size of string
 \[|w| + |v| = \]
- concatenation
 \[v^3 = vvv = vovov = \]
- \(v^0 = \)
- \(w^R = \)
- \(|vv^R w| = \)
- \(ab \circ \lambda = \)

Definition

\(\Sigma^* \) = set of strings obtained by concatenating 0 or more symbols from \(\Sigma \)

Example

\(\Sigma = \{a, b\} \)

\(\Sigma^* = \)

\(\Sigma^+ = \)

Examples

\(\Sigma = \{a, b, c\}, L_1 = \{ab, bc, aba\}, L_2 = \{c, bc, bcc\} \)

- \(L_1 \cup L_2 = \)
- \(L_1 \cap L_2 = \)
- \(L_1^c = \)
- \(L_1 \cap L_2^c = \)
- \(L_1 \circ L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} = \)
Definition

\[L^0 = \{ \lambda \} \]
\[L^2 = L \circ L \]
\[L^3 = L \circ L \circ L \]
\[L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \ldots \]
\[L^+ = L^1 \cup L^2 \cup L^3 \ldots \]

Grammars

grammar for english

\[<\text{sentence}> \rightarrow <\text{subject}><\text{verb}><\text{d.o.}> \]
\[<\text{subject}> \rightarrow <\text{noun}> | <\text{article}><\text{noun}> \]
\[<\text{verb}> \rightarrow \text{hit} | \text{ran} | \text{ate} \]
\[<\text{d.o.}> \rightarrow <\text{article}><\text{noun}> | <\text{noun}> \]
\[<\text{noun}> \rightarrow \text{Fritz} | \text{ball} \]
\[<\text{article}> \rightarrow \text{the} | \text{an} | \text{a} \]

Examples (derive a sentence)

Fritz hit the ball.

\[<\text{sentence}> \rightarrow <\text{subject}><\text{verb}><\text{d.o.}> \]
\[\rightarrow <\text{noun}><\text{verb}><\text{d.o.}> \]
\[\rightarrow \text{Fritz}<\text{verb}><\text{d.o.}> \]
\[\rightarrow \text{Fritz hit}<\text{d.o.}> \]
\[\rightarrow \text{Fritz hit}<\text{article}><\text{noun}> \]
\[\rightarrow \text{Fritz hit the}<\text{noun}> \]
\[\rightarrow \text{Fritz hit the}<\text{ball}> \]

Can we also derive the sentences?

The ball hit Fritz.

The ball ate the ball

Syntactically correct?

Semantically correct?
Grammar

\(G=(V,T,S,P) \) where

- \(V \) - variables (or nonterminals)
- \(T \) - terminals
- \(S \) - start variable (\(S \in V \))
- \(P \) - productions (rules)

\(x \rightarrow y \) “means” replace \(x \) by \(y \)
\(x \in (V \cup T)^+ \), \(y \in (V \cup T)^* \)

where \(V, T, \) and \(P \) are finite sets.

Definition

\(w \Rightarrow z \) \(w \) derives \(z \)
\(w \Rightarrow^* z \) derives in 0 or more steps
\(w \Rightarrow^+ z \) derives in 1 or more steps

Definition

\(G=(V,T,S,P) \)

\(L(G)=\{w \in T^* \mid S \Rightarrow^* w\} \)

Example

\(G=(\{S\}, \{a,b\}, S, P) \)

\(P=\{S \rightarrow aaS, S \rightarrow b\} \)

\(L(G)= \)

Example

\(L(G) = \{a^nccb^n \mid n > 0\} \)

G =

Example

\(G=(\{S\}, \{a,b\}, S, P) \)

\(P=\{S \rightarrow aSb, S \rightarrow SS, S \rightarrow ab\} \)

Which of these strings \(aabb, abab, abba, babab \) can be generated by this grammar? Show the derivations.

\(L(G)= \)
Automata Abstract model of a digital computer