Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where
- Q is a finite set of states
- Σ is the tape (input) alphabet
- q₀ is the initial state
- F ⊆ Q is the set of final states.
- δ: Q × Σ → Q

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

M = (Q, Σ, δ, q₀, F) =

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: δ(q₀, 1) =
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q∈F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

Definition:

δ*(q, λ) = q
δ*(q, wa) = δ(δ*(q, w), a)

Definition The language accepted by a DFA M=(Q,Σ,δ,q0,F) is set of all strings on Σ accepted by M. Formally,

L(M)=\{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\}
Trap State

Example: $L(M) = \{ b^n a \mid n > 0 \}$

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example:

$L = \{ w \in \Sigma^* \mid w \text{ has an even number of } a \text{’s and an even number of } b \text{’s} \}$

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Definition A language is regular iff there exists DFA M s.t. $L = L(M)$.

3
Chapter 2.2
Nondeterministic Finite Automata (or Acceptor)

Definition
An NFA=\((Q, \Sigma, \delta, q_0, F)\)

where
\(Q\) is finite set of states
\(\Sigma\) is tape (input) alphabet
\(q_0\) is initial state
\(F \subseteq Q\) is set of final states.
\(\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q\)

Example

\[
\begin{array}{c}
q_0 \\
\text{a} \\
\text{a} \\
\text{b} \\
\text{b} \\
\text{a} \\
\end{array}
\]

Note: In this example \(\delta(q_0, a) = \)

\(L = \)

Example
\(L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}\)

Definition \(q_j \in \delta^*(q_i, w)\) if and only if there is a walk from \(q_i\) to \(q_j\) labeled \(w\).

Example From previous example:
\(\delta^*(q_0, ab) = \)
\(\delta^*(q_0, aba) = \)

Definition: For an NFA \(M\), \(L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}\)

The language accepted by nfa \(M\) is all strings \(w\) such that there exists a walk labeled \(w\) from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

![NFA Diagram]

Theorem Given an NFA \(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\[Q_D = \]

\[F_D = \]

\[\delta_D : \]

Algorithm to construct \(M_D \)

1. start state is \(\{q_0\} \cup \text{closure}(q_0) \)
2. While can add an edge
 (a) Choose a state \(A = \{q_i, q_j, \ldots, q_k\} \) with missing edge for \(a \in \Sigma \)
 (b) Compute \(B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a) \)
 (c) Add state \(B \) if it doesn’t exist
 (d) add edge from \(A \) to \(B \) with label \(a \)
3. Identify final states
4. if \(\lambda \in L(M_N) \) then make the start state final.
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F
\]
\[
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR }
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example:
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Properties and Proving - Problem 2

Consider the property Truncate all preceeding b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).