Today

- Big-Oh

- Snarf today’s code
Announcements

• Hangman - Due tomorrow!
• APT set 2 - Due Jan 29
• NO recitation prep for Friday
 • Bring your book (if you have one)

• UTAs are in the LINK!!!!!!!!!!
• Data Structures
 • Array
 • ArrayList
 • HashSet
 • HashMap

• When to use?
 • function and time
• Big-Oh
 • Estimate time required for a program
 • No units of time!!!!!!!
 • Count operations
How to calculate Big-Oh
 • Assign costs to operations
Big-Oh

• Declarations cost 0 units
 • double d;

• Operations cost 1 unit
 • d = 4.56 //assignment
 • d * 5 //mathematical operation
 • return d; //returns
Big-Oh

1 public double getArea(double r) {
2 double pi;
3 pi = 3.14;
4 double area;
5 area = pi * r * r;
6 return area;
7 }

public double getArea(double r) {
 double pi;
 pi = 3.14;
 double area;
 area = pi * r * r;
 return area;
}
Big-Oh

• How to calculate Big-Oh
 • Assign costs to operations
 • Write in Big-Oh notation
public double getArea(double r){
 double pi;
 pi = 3.14;
 double area;
 area = pi * r * r;
 return area;
}

O(5)
Big-Oh

• How to calculate Big-Oh
 • Assign costs to operations
 • Write in Big-Oh notation
 • Simplify
Big-Oh

- Simplify
 - Remove constants!
 - \(O(4N) = O(N) \)
 - \(O(3N^2 + 5) = O(N^2) \)
 - Remove lower order terms
 - \(O(N^2 + N) = O(N^2) \)
public double getArea(double r) {
 double pi = 3.14;
 double area = pi * r * r;
 return area;
}

O(5) = O(1)
Big-Oh

- How to calculate Big-Oh
 - Assign costs to operations
 - Write in Big-Oh notation
 - Simplify
public static int sum(int n) {
 int partialSum;
 partialSum = 0;
 for(int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}
public static int sum(int n) {
 int partialSum = 0;
 for (int i = 1; i <= n; i++) {
 partialSum += i * i * i;
 }
 return partialSum;
}
public static int sum(int n) {
 int partialSum; 0
 partialSum = 0; 1
 for(int i = 1; i <= n; i++) n
 partialSum += i * i * i; 4
 return partialSum; 1
}

O(1+N*4 + 1) = O(4N+2) = O(N)
Big-Oh

• Rules
 • for-loops
 • (statements in for-loop) * iterations
 • Nested for-loops (inside-out)
 • (statements in innermost for-loop) * iterations * iterations
 • Consecutive statements
 • Add them
 • If/else
 • Test + max(if, else)
<table>
<thead>
<tr>
<th>Function</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Constant</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$\log^2 N$</td>
<td>Log-squared</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>$N \log N$</td>
<td></td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
</tbody>
</table>
Rules

- $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$
- $T_1(N) + T_2(N) = O(f(N) + g(N))$
- $T_1(N) \times T_2(N) = O(f(N) \times g(N))$
- $\log^k N = O(N)$
Rules

• Remove constants!
 • $O(4N) = O(N)$
 • $O(3N^2 + 5) = O(N^2)$

• Remove lower order terms
 • $O(N^2 + N) = O(N^2)$
Practice

• Snarf today’s code

• Complete the form
 • http://goo.gl/kuuHM

• For the timings
 • Choose an N that is DIFFERENT from neighbors
• **Big-Oh**
 • *Estimate* time required for a program
 • No units of time!!!!!!!
 • Count operations
Announcements

- Hangman - Due tomorrow!
- APT set 2 - Due Jan 29
- NO recitation prep for Friday
 - Bring your book (if you have one)

- UTAs are in the LINK!!!!!!!!!!
<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Add</th>
<th>Contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>O(1)</td>
<td>O(N)</td>
</tr>
<tr>
<td>ArrayList</td>
<td>O(1)</td>
<td>O(N)</td>
</tr>
<tr>
<td>HashSet</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Contains

- Array and ArrayList
 - Best case?
 - Average case?
 - Worst case?
Contains

• Array and ArrayList

• Best case? 1
• Average case? N/2
• Worst case? N