Sampling from Databases

CompSci 590.02
Instructor: AshwinMachanavajjhala

Recap

- Given a set of elements, random sampling when number of elements N is known is easy if you have random access to any arbitrary element
- Pick n indexes at random from 1 ... N
- Read the corresponding n elements
- Reservoir Sampling: If N is unknown, or if you are only allowed sequential access to the data
- Read elements one at a time. Include $\mathrm{t}^{\text {th }}$ element into a reservoir of size n with probability n / t.
- Need to access at most $n(1+\ln (N / n))$ elements to get a sample of size n
- Optimal for any reservoir based algorithm

Today's Class

- In general, sampling from a database where elements are only accessed using indexes.
- B+-Trees
- Nearest neighbor indexes
- Estimating the number of restaurants in Google Places.

B+ Tree

- Data values only appear in the leaves
- Internal nodes only contain keys
- Each node has between $\mathrm{f}_{\max } / 2$ and $\mathrm{f}_{\max }$ children
- $f_{\text {max }}=$ maximum fan-out of the tree
- Root has 2 or more children

Problem

- How to pick an element uniformly at random from the B^{+}Tree?

Attempt 1: Random Path

Choose a random path

- Start from the root
- Choose a child uniformly at random
- Uniformly sample from the resulting leaf node
- Will this result in a random sample?

Attempt 1: Random Path

Choose a random path

- Start from the root
- Choose a child uniformly at random
- Uniformly sample from the resulting leaf node
- Will this result in a random sample?

NO.
Elements reachable from internal nodes with low fanout are more likely.

Attempt 2 : Random Path with Rejection

- Attempt 1 will work if all internal nodes have the same fan-out
- Choose a random path
- Start from the root
- Choose a child uniformly at random
- Uniformly sample from the resulting leaf node
- Accept the sample with probability $\prod_{i \in p a t h} f_{i} / f_{\max }$

Attempt 2 : Correctness

- Any root to leaf path is picked with probability: $\prod_{i \in p a t h} f_{i} / f_{\max }$
- The probability of including a record given the path:

$$
\prod_{i \in p a t h} 1 / f_{i}
$$

Attempt 2 : Correctness

- Any root to leaf path is picked with probability: $\prod_{i \in p a t h}{ }_{i} / f_{\max }$
- The probability of including a record given the path:

$$
\prod_{i \in p a t h} 1 / f_{i}
$$

- The probability of including a record:

$$
\overline{\prod_{i \text { cpath }}{ }^{1} / f_{\max }=1 / f_{\max }^{h}}
$$

Attempt 3 : Early Abort

Idea: Perform acceptance/rejection test at each node.

- Start from the root
- Choose a child uniformly at random
- Continue the traversal with probability: $f_{i} / f_{\max }$
- At the leaf, pick an element uniformly at \# of elements in leaf random, and accept it with probability : $\overline{\max \# \text { elements in leaf }}$

Proof of correctness: same as previous algorithm

Attempt 4: Batch Sampling

- Repeatedly sampling n elements will require accessing the internal nodes many times.

Attempt 4: Batch Sampling

- Repeatedly sampling n elements will require accessing the internal nodes many times.

Perform random walks simultaneously:

- At the root node, assign each of the n samples to one of its children uniformly at random
$-\mathrm{n} \rightarrow\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}\right)$
- At each internal node,
- Divide incoming samples uniformly across children.
- Each leaf node receives s samples. Include each sample with acceptance probability

$$
\prod_{i \in p a t h} f_{i} / f_{\max }
$$

Attempt 4 : Batch Sampling

- Problem: If we start the algorithm with n , we might end up with fewer than n samples (due to rejection)

Attempt 4 : Batch Sampling

- Problem: If we start the algorithm with n, we might end up with fewer than n samples (due to rejection)
- Solution: Start with a larger set
- $n^{\prime}=n / \beta^{h-1}$, where β is the ratio of average fanout and $f_{\max }$

Summary of B+tree sampling

- Randomly choosing a path weights elements differently
- Elements in the subtree rooted at nodes with lower fan-out are more likely to be picked than those under higher fan-out internal nodes
- Accept/Reject sampling helps remove this bias.

Nearest Neighbor indexes

Problem Statement

Input:

- A database D that can't be accessed directly, and where each element is associated with a geo location.
- A nearest neighbor index (elements in D near $\langle x, y>$)
- Assumption: index returns k elements closest to the point $<x, y>$

Output

- Estimate $\frac{1}{|D|} \sum_{d \in D} f(d)$

Problem Statement

Input:

- A database D that can't be accessed directly, and where each element is associated with a geo location.
- A nearest neighbor index (elements in D near $<x, y>$)
- Assumption: index returns k elements closest to the point $\langle x, y\rangle$

Output

- Estimate $\frac{1}{|D|} \sum_{d \in D} f(d)$

Applications

- Estimate the size of a population in a region
- Estimate the size of a competing business' database
- Estimate the prevalence of a disease in a region

Attempt 1: Naïve geo sampling

For $\mathrm{i}=1$ to N

- Pick a random point $p_{i}=<\mathrm{x}, \mathrm{y}>$
- Find element d_{i} in D that is closes to p_{i}
- Return $\hat{f}(D)=\frac{1}{N} \sum_{i} f\left(d_{i}\right)$

Problem?

Elements d_{7} and d_{8} are much more likely to be picked than d_{1}

Voronoi Decomposition

Voronoi Decomposition

$$
P\left[\text { sampling } d_{i}\right]=\frac{\operatorname{area}\left(\operatorname{Vor}\left(d_{i}\right)\right)}{\text { total area }}
$$

Voronoi decomposition of Restaurants in US

Attempt 2: Weighted sampling

For $\mathrm{i}=1$ to N

- Pick a random point $p_{i}=\langle\mathrm{x}, \mathrm{y}\rangle$
- Find element d_{i} in D that is closes to p_{i}
- Return $\hat{f}(D)=\frac{1}{N} \sum_{i}\left(f\left(d_{i}\right) \cdot \frac{\text { total area }}{\operatorname{area}\left(\operatorname{Vor}\left(d_{i}\right)\right)}\right)$

Attempt 2: Weighted sampling

For $\mathrm{i}=1$ to N

- Pick a random point $p_{i}=\langle\mathrm{x}, \mathrm{y}\rangle$
- Find element d_{i} in D that is closes to p_{i}
- Return $\hat{f}(D)=\frac{1}{N} \sum_{i}\left(f\left(d_{i}\right) \cdot \frac{\text { total area }}{\operatorname{area}\left(\operatorname{Vor}\left(d_{i}\right)\right)}\right)$

Problem:
We need to compute the area of the Voronoi cell.
We do not have access to other elements in the database.

Using index to estimate Voronoi cell

- Find nearest point

Using index to estimate Voronoi cell

- Find a point on (a_{0}, b_{0})
 which is just inside the Voronoi cell.
- Use binary search
- Recursively check whether mid point is in the Voronoi cell

Using index to estimate Voronoi cell

- Find nearest points to

a_{1}
- a_{1} has to be equidistant to one point other than e_{0} and d
Next direction is perpendicular to $\left(\mathrm{e}_{1}, \mathrm{~d}\right)$

Using index to estimate Voronoi cell

- Find nearest points to

a_{1}
- a_{1} has to be equidistant to one point other than e_{0} and d
Next direction is perpendicular to $\left(\mathrm{e}_{1}, \mathrm{~d}\right)$

Find next point ...
... and so on ...

Using index to estimate Voronoi cell

- Find nearest points to

a_{1}
- a_{1} has to be equidistant to one point other than e_{0} and d
- Next direction is perpendicular to ($\mathrm{e}_{1}, \mathrm{~d}$)

Find next point ...
... and so on ...

Number of samples

- Identifying each a_{i} requires a binary search
- If L is the max length of (ai, bi), then $\mathrm{a}_{\mathrm{i}+1}$ can be computed with ε error in $\mathrm{O}(\log (\mathrm{L} / \varepsilon))$ calls to the index
- Identifying the next direction requires another call to the index
- If number of edges of Voronoi cell $=\mathrm{k}$, total number of calls to the index $=\mathrm{O}(\mathrm{K} \log (\mathrm{L} / \varepsilon))$
- Average number of edges of a Voronoi cell < 6
- Assuming general position ...

Summary

- Many web services allow access to databases using nearest neighbor indexes.
- Showed a method to sample uniformly from such databases.
- Next class: Monte Carlo Estimation for \#P-hard problems.

References

- F. Olken, "Random Sampling from Databases" , PhD Thesis, U C Berkeley, 1993
- N. Dalvi, R. Kumar, A. Machanavajjhala, V. Rastogi, "Sampling Hidden Objects using Nearest Neighbor Oracles", KDD 2011

