Approximate Counting By Sampling
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Recap

Till now we saw ...

* Efficient sampling techniques to get uniformly random samples
— Reservoir sampling
— Sampling using a tree index
— Sampling using a nearest neighbor index

Today'’s class

 Use sampling for approximate counting.
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Counting Problems

e Given a decision problem S, compute the number of feasible
solutions to S (denoted by #S).

Example:

 #DNF: Count the number of satisfying assignments of a boolean
formula in DNF

— E.g., (xAxX;AX3Axy )V (x3N\Xs\Xg)
— Let n = number of variables
— Let m = number of disjuncts

* Counting the number of triangles in a graph
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Applications of DNF counting

* Advertising

— Contracts are of the following form:
Need 1 million impressions [Males, 15-25, CA] OR [Males, 15-35, TX]

— Use historical data to estimate whether such a contract can be fulfilled.

e Web Search

— Given a keyword query q = (k1, k2, ..., km)
Find the number of documents that contain at least one keyword.
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DNF Counting is Hard

Checking whether a DNF formula is unsatisfiable is NP-hard
#DNF € #P

#P is the class of all problems for which there exist a non-
deterministic polynomial time algorithm A such that for any
instance |, the number of accepting computations is #l.

— i.e., we can verify in polynomial time whether #l > 1.
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FPRAS

* QOur goalis design an fully polynomial randomized approximation
scheme (FPRAS).

* For every input DNF, error parameter € > 0, and confidence
parameter 0 < 6 < 1, the algorithm must output a value C’ s.t.

P[(1-€) C< C’'<(1+€)C] > 1-6

where Cis the true number of satisfying assignments, in time
polynomial in the input DNF, 1/ and log(1/6)
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FPRAS

Sometimes, FPRAS are defined without the 6 ...

For every input DNF, error parameter € > 0, the algorithm must
output a value C’ s.t.

P[(1-€) C< C’' < (1+€)C] >3/4

where Cis the true number of satisfying assignments, in time
polynomial in the input DNF, and 1/«

Exercise: The two definitions are equivalent.
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Monte Carlo Method

* Suppose U is a universe of elements
— In DNF counting, U = set of all assignments from {0,1}"

e Let G be asubset of interestin U

— In DNF counting, G = set of all satisfying assignments.

Fori=1toN
* Chooseu ¢ U, uniformly at random

 Check whetherueG?
 LetX, =1ifuegG, X, =0 otherwise

2i Xi
N

Return ¢ = |U]"
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Monte Carlo Method

When should you use it?

* Easy to uniformly sample from U
* Easy to check whether sampleisin G
* Nis polynomial in the size of the input.

Theorem:

_ Ul 3 2
VO<e<150<6§<Lif N> —-—-In—
G| &2 )

then,P[(1—o)|G| < C<(1+&)IGl|=1-6
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Chernoff Bound

Theorem:

If X{,X,,...,X,, are independent binary random

mn
variables,Y, = ZX,;,E[YH] = u. Then,Ve = 0,

=1

o€ K
PlY,Z (1 +e)u] < ((1 n E)(1+£))

Moreover, VO < e <1,

e ¢ K
PlY, < (1—¢)u] < ((1 — g)(l-e))

Lecture 3 : 590.02 Spring 13 10 Duke

UNINVMERSITY




Upper Chernoff Bound Proof

PY, = (1 +&)u] = Ple™t" = e t(+ak] vt >

E[e"™] . .
< t(1ro) (Markov inequality)

e

[1; E[e"*]
= Bt(1+£),u,
B [l;(pie* +1—p;) B [Ti(p; (et — 1)+ 1)
_ et(1+e)u _ et(1+e)p

Hi epi(et_l) e”(et_l)

= VvVt >0

<
— et(1+£),u, et(1+£),u,

RHS is minimized when t = In(1 + ¢€)
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Simpler Upper Tail Bound

o€ K
PlY, =z (1 +e)u] < ((1 n E)(1+£))

In(1 + &) e g3 gt
nl+ée)=€¢——+——"7+--
2 3 4
£2
(1+8)In(l+e)=¢c+ Py + positive terms

(1 + &)+ > e(_£+£3_2)

PIY, = (1 + &)u] < e~& H/3
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Simpler Lower Tail Bound

€

—& K
(1- g)u—e>)

PlY, =1 -8yl = (

e g3 ¢4

Inl—-¢)= —-e———————...
(A-8)=—e-5->5-7

52
(1—¢)ln(1l—¢) =—c+ 5 + positive terms

82
—e+S)

(1—¢)178) > e( 2

PlY, < (1 —e)u] < e H/2
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DNF Counting

© ul=2
|G| can be exponentially smaller than |U]|

Example: (g Ax)V (g AX5)V (e Ax3 )V (x5 Ax5) ..

* Every satisfying assignment must contain x, =1

+ 16| =22

* Large |U|/|G| leads to an exponential number of samples for
convergence.
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Importance Sampling

Set U’ ={(u, i) | uis an assignment that satisfies disjunct i }

Set G’ ={(u, i) | uis an assignment that satisfies disjunct i
but does not satisfy any disjunctj <}

6’| = |G|
— Each assignment appears exactly once.
Easy to check if sampleisin G’

U’ /|G| sm

— Each assignment appears at most m times in U’

We are done if we can sample uniformly from U’

Lecture 3 : 590.02 Spring 13 15 Duke

UNINMERSITTY



Importance Sampling

Given a DNF formula, it is easy to construct a satisfying
assignment.

— E.g., (x Ax; Ax3Ax )V (x3\Xs\xg)
— Pick a clause (e.g. 1%)

— Create a satisfying assignment for variables in that clause (e.g, 1001)
— Randomly choose 0 or 1 for the remaining variables.

If a disjunct i has k. literals, there are 2" satisfying assignments

(u,i)

|U| =%, 2m¢
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Importance Sampling

Fori=1toN

* Choose a disjunct i, with probability 27k /|U’|

* Generate a random assignment satisfying disjunct i
* Check whetherueG?

 LetX,=1ifuegG, X, =0 otherwise

2i X;

J.n';lr

Return ¢ = |U'| -

Theorem: The above algorithm is an (€,6) FPRAS if

3 2

N> m- -—-In—
g2 )
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Summary of DNF Counting

#DNF is a #P-hard problem

Monte Carlo method can result in a (g€,0) FPRAS if

— Can sample from U in PTIME
— Can check membership in G PTIME
— |G| is not very small compared to |U|

Monte Carlo on a modified domain results in a (g,6) FPRAS for
#DNF
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Applications of Triangle Counting

 Measures of homophily
— |If A-B and B-C are edges, what is the probability that A-C is also an edge

* Clustering Coefficient: 3 x # triangles / # connected triples

* Transitivity Ratio: # triangles / # connected triples
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Triangle Counting is “Easy”

* Naive method: O(n3)

* Well known methods that take O(d...°n) and O(m?>)

max

 Still not efficient for a very large graph
— Twitter in 2009
— 54,981,152 nodes
— 1,963,263,821 edges
— Max degree > 3 million
— Clustering Coefficient ~ 0.1
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Is there an FPRAS?

e Exercise
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