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Recap: Monte Carlo Method 

• If U is a universe of items, and G is a subset satisfying some 
property, we want to estimate |G| 
– Either intractable or inefficient to count exactly 
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For i = 1 to N 

• Choose u ε U, uniformly at random 

• Check whether u ε G ?  

• Let Xi = 1 if u ε G, Xi = 0 otherwise 

 

Return 

 

Variance:  

 



Recap: Monte Carlo Method 

When is this method an FPRAS?  

 

• |U| is known and easy to uniformly sample from U. 

• Easy to check whether sample is in G 

• |U|/|G| is small … (polynomial in the size of the input) 
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Recap: Importance Sampling 

• In certain case |G| << |U|, hence the number of samples is not 
small.  

 

• Suppose q(x) is the density of interest, sample from a different 
approximate density p(x) 
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Today’s Class 

 

• Markov Chains 

 

• Markov Chain Monte Carlo sampling 
–  a.k.a. Metropolis-Hastings Method.  

– Standard technique for probabilistic inference in machine learning, when 
the probability distribution is hard to compute exactly  
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Markov Chains 

• Consider a time varying random process which takes the  
value Xt at time t 

– Values of Xt are drawn from a finite (more generally countable) set 
of states Ω.  

 

• {X0 … Xt… Xn} is a Markov Chain if the value of  
Xt only depends on Xt-1 
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Transition Probabilities 

• Pr[Xt+1 = sj | Xt = si], denoted by P(i,j), is called the transition 
probability 

– Can be represented as a |Ω| x |Ω| matrix P. 

– P(i,j)  is the probability that the chain moves from state i to state j 

 

• Let πi(t) = Pr[Xt = si] denote the probability of reaching state i at 
time t 
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Transition Probabilities 

• Pr[Xt+1 = sj | Xt = si], denoted by P(i,j), is called the transition 
probability 

– Can be represented as a |Ω| x |Ω| matrix P. 

– P(i,j)  is the probability that the chain moves from state i to state j 

 

• If  π(t) denotes the 1x|Ω| vector of probabilities of reaching all 
the states at time t,  
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Example 

• Suppose Ω = {Rainy, Sunny, Cloudy} 

• Tomorrow’s weather only depends on today’s weather. 
– Markov process 
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Pr[Xt+1 = Sunny | Xt = Rainy] = 0.25 

Pr[Xt+1 = Sunny | Xt = Sunny] = 0 
No 2 consecutive days of sun (Seattle?) 



Example 

• Suppose Ω = {Rainy, Sunny, Cloudy} 

• Tomorrow’s weather only depends on today’s weather. 
– Markov process 

 

 

 

 

• Suppose today is Sunny.  

• What is the weather 2 days from now?  
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Example 

• Suppose Ω = {Rainy, Sunny, Cloudy} 

• Tomorrow’s weather only depends on today’s weather. 
– Markov process 

 

 

 

 

• Suppose today is Sunny.  

• What is the weather 7 days from now?  
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Example 

• Suppose Ω = {Rainy, Sunny, Cloudy} 

• Tomorrow’s weather only depends on today’s weather. 
– Markov process 

 

 

 

 

• Suppose today is Rainy.  

• What is the weather 2 days from now?  

 

• Weather 7 days from now? 
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Example 

 

 

 

 

 

 

 

 

• After sufficient amount of time the expected weather distribution is 
independent of the starting value. 

• Moreover,  

• This is called the stationary distribution.  
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Stationary Distribution 

•  π is called a stationary distribution of the Markov Chain if 

 

 

• That is, once the stationary distribution is reached, every 
subsequent Xi is a sample from the distribution π 

 

How to use Markov Chains:  

• Suppose  you want to sample from a set |Ω|, according to distribution π 

• Construct a Markov Chain (P) such that π is the stationary distribution 

• Once stationary distribution is achieved, we get samples from the correct 
distribution.  
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Conditions for a Stationary Distribution 

A Markov chain is ergodic if it is: 

  

• Irreducible:  A state j can be reached from any state i in some 
finite number of steps.  
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Conditions for a Stationary Distribution 

A Markov chain is ergodic if it is: 

  

• Irreducible:  A state j can be reached from any state i in some 
finite number of steps.  

 

 

 

• Aperiodic: A chain is not forced into cycles of fixed length 
between certain states 
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Conditions for a Stationary Distribution 

A Markov chain is ergodic if it is: 

• Irreducible:  A state j can be reached from any state i in some 
finite number of steps.  

• Aperiodic: A chain is not forced into cycles of fixed length 
between certain states 

 

Theorem: For every ergodic Markov chain, there is a unique vector π 
such that for all initial probability vectors π(0),  
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Sufficient Condition: Detailed Balance 

• In a stationary walk, for any pair of states j, k, the Markov Chain is 
as likely to move from j to k as from k to j. 

 

 

 

 

• Also called reversibility condition.  
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Example: Random Walks 

• Consider a graph G = (V,E), with weights on edges (w(e)) 

 

Random Walk:  

• Start at some node u in the graph G(V,E) 

• Move from node u to node v with probability proportional to 
w(u,v).  

 

Random walk is a Markov chain  

• State space  = V 

• P(u,v) =  w(u,v) / Σ w(u,v’)     if (u,v) ε E 
    =  0    if (u,v) is not in E  
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Example: Random Walk 

Random walk is ergodic if:  

 

• Irreducible:  A state j can be reached from any state i in some 
finite number of steps. 
 
If G is connected.   

 

• Aperiodic: A chain is not forced into cycles of fixed length 
between certain states 
 
If G is not bipartite  
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Example: Random Walk 

Uniform random walk: 

• Suppose all weights on the graph are 1 

• P(u,v) = 1/deg(u)       (or 0) 

 

Theorem: If G is connected and not bipartite, then the stationary 
distribution of the random walk is 
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Example: Random Walk 

Symmetric random walk: 

• Suppose P(u,v) = P(v,u) 

 

Theorem: If G is connected and not bipartite, then the stationary 
distribution of the random walk is 
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Stationary Distribution 

•  π is called a stationary distribution of the Markov Chain if 

 

 

• That is, once the stationary distribution is reached, every 
subsequent Xi is a sample from the distribution π 

 

How to use Markov Chains:  

• Suppose  you want to sample from a set |Ω|, according to distribution π 

• Construct a Markov Chain (P) such that π is the stationary distribution 

• Once stationary distribution is achieved, we get samples from the correct 
distribution.  
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Metropolis-Hastings Algorithm (MCMC) 

• Suppose we want to sample from a complex distribution  
f(x) = p(x) / K, where K is unknown or hard to compute 

 

• Example: Bayesian Inference 
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Metropolis-Hastings Algorithm 

• Start with any initial value x0, such that p(x0) > 0 

 

• Using current value xt-1, sample a new point according some 
proposal distribution q(xt | xt-1) 

 

• Compute 

 

• With probability α accept the move to xt,  
otherwise reject xt  
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Why does Metropolis-Hastings work?  

• Metropolis-Hastings describes a Markov chain with transition 
probabilities:  

 

 

 

• We want to show that f(x) = p(x)/K is the stationary distribution 

 

• Recall sufficient condition for stationary distribution:  
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Why does Metropolis-Hastings work?  

• Metropolis-Hastings describes a Markov chain with transition 
probabilities:  

 

 

• Sufficient to show:  
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Proof: Case 1 

 

 

• Suppose 

 

• Then,  P(x,y) = q(y | x) 

 

• Therefore   
P(x,y)p(x) =  q(y | x) p(x) = p(y) q(x | y) = P(y,x) p(y) 
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Proof: Case 2 

 

 

   

 

 

 

 

 

 

 

• Proof of Case 3 is identical.  
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When is stationary distribution reached? 

• Next class …  
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