Markov Chains and MCMC

CompSci 590.02
Instructor: AshwinMachanavajjhala

Recap: Monte Carlo Method

- If U is a universe of items, and G is a subset satisfying some property, we want to estimate |G|
- Either intractable or inefficient to count exactly

For $\mathrm{i}=1$ to N

- Choose u ε U, uniformly at random
- Check whether u ε G ?
- Let $X_{i}=1$ if $u \varepsilon G, X_{i}=0$ otherwise

Return $\hat{C}=|U| \cdot \frac{\sum_{i} X_{i}}{N}$
Variance: $|U| \frac{\mu(1-\mu)}{\sqrt{N}}$, where $\mu=\frac{|G|}{|U|}$

Recap: Monte Carlo Method

When is this method an FPRAS?

- |U| is known and easy to uniformly sample from U .
- Easy to check whether sample is in G
- $|\mathrm{U}| /|\mathrm{G}|$ is small ... (polynomial in the size of the input)

Theorem:

$$
\begin{aligned}
& \forall 0<\varepsilon<1.5,0<\delta<1, \text { if } N>\frac{|U|}{|G|} \cdot \frac{3}{\varepsilon^{2}} \cdot \ln \frac{2}{\delta} \\
& \text { then, } P[(1-\varepsilon)|G| \leq \hat{C} \leq(1+\varepsilon)|G|] \geq 1-\delta
\end{aligned}
$$

Recap: Importance Sampling

- In certain case $|G| \ll|U|$, hence the number of samples is not small.
- Suppose $\mathrm{q}(\mathrm{x})$ is the density of interest, sample from a different approximate density $\mathrm{p}(\mathrm{x})$

$$
\begin{gathered}
\int f(x) q(x) d x=\int f(x)\left(\frac{q(x)}{p(x)}\right) p(x) d x \\
=E_{p(x)}\left[f(x) \frac{q(x)}{p(x)}\right]
\end{gathered}
$$

Hence, $\int f(x) q(x) d x \approx \frac{1}{N} \sum_{i=0}^{N} f\left(X_{i}\right) \frac{q\left(X_{i}\right)}{p\left(X_{i}\right)}$,
where X_{i} are sampled from $p(x)$

Today’s Class

- Markov Chains
- Markov Chain Monte Carlo sampling
- a.k.a. Metropolis-Hastings Method.
- Standard technique for probabilistic inference in machine learning, when the probability distribution is hard to compute exactly

Markov Chains

- Consider a time varying random process which takes the value X_{t} at time t
- Values of X_{t} are drawn from a finite (more generally countable) set of states Ω.
- $\left\{X_{0} \ldots X_{t} \ldots X_{n}\right\}$ is a Markov Chain if the value of X_{t} only depends on X_{t-1}

Transition Probabilities

- $\operatorname{Pr}\left[X_{t+1}=s_{j} \mid X_{t}=s_{i}\right]$, denoted by $P(i, j)$, is called the transition probability
- Can be represented as a $|\Omega| \times|\Omega|$ matrix P.
$-P(i, j)$ is the probability that the chain moves from state i to state j
- Let $\pi_{\mathrm{i}}(\mathrm{t})=\operatorname{Pr}\left[\mathrm{X}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}\right]$ denote the probability of reaching state i at time t

$$
\begin{aligned}
& \pi_{j}(t)=\operatorname{Pr}\left[X_{t}=s_{j}\right] \\
&=\sum_{i} \operatorname{Pr}\left[X_{t}=s_{j} \mid X_{t-1}=s_{i}\right] \operatorname{Pr}\left[X_{t-1}=s_{i}\right] \\
&=\sum_{i} P(i, j) \cdot \operatorname{Pr}\left[X_{t-1}=s_{i}\right]=\sum_{i} P(i, j) \pi_{i}(t-1) \\
& \text { Lecture 4 }: 590.02 \text { Spring 13 }
\end{aligned}
$$

Transition Probabilities

- $\operatorname{Pr}\left[X_{t+1}=s_{j} \mid X_{t}=s_{i}\right]$, denoted by $P(i, j)$, is called the transition probability
- Can be represented as a $|\Omega| \times|\Omega|$ matrix P.
$-P(i, j)$ is the probability that the chain moves from state i to state j
- If $\pi(t)$ denotes the $1 \mathrm{x}|\Omega|$ vector of probabilities of reaching all the states at time t ,

$$
\boldsymbol{\pi}(t)=\boldsymbol{\pi}(t-1) \boldsymbol{P}
$$

Example

- Suppose $\Omega=$ \{Rainy, Sunny, Cloudy $\}$
- Tomorrow's weather only depends on today's weather.
- Markov process

$$
\operatorname{Pr}\left[X_{t+1}=\text { Sunny } \mid X_{t}=\text { Rainy }\right]=0.25
$$

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.5 & 0 & 0.5 \\
0.25 & 0.25 & 0.3
\end{array}\right.
$$

$\operatorname{Pr}\left[X_{t+1}=\right.$ Sunny $\mid X_{t}=$ Sunny $]=0$
No 2 consecutive days of sun (Seattle?)

Example

- Suppose $\Omega=$ \{Rainy, Sunny, Cloudy $\}$
- Tomorrow's weather only depends on today's weather.
- Markov process

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.5 & 0 & 0.5 \\
0.25 & 0.25 & 0.5
\end{array}\right]
$$

- Suppose today is Sunny. $\pi(0)=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
- What is the weather 2 days from now?

$$
\boldsymbol{\pi}(2)=\boldsymbol{\pi}(0) \boldsymbol{P}^{2}=\left[\begin{array}{lll}
0.375 & 0.25 & 0.375
\end{array}\right]
$$

Example

- Suppose $\Omega=$ \{Rainy, Sunny, Cloudy $\}$
- Tomorrow's weather only depends on today's weather.
- Markov process

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.5 & 0 & 0.5 \\
0.25 & 0.25 & 0.5
\end{array}\right]
$$

- Suppose today is Sunny. $\pi(0)=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
- What is the weather 7 days from now?

$$
\boldsymbol{\pi}(7)=\boldsymbol{\pi}(0) \boldsymbol{P}^{7}=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4
\end{array}\right]
$$

Example

- Suppose $\Omega=$ \{Rainy, Sunny, Cloudy\}
- Tomorrow's weather only depends on today's weather.
- Markov process

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.5 & 0 & 0.5 \\
0.25 & 0.25 & 0.5
\end{array}\right]
$$

- Suppose today is Rainy. $\boldsymbol{\pi}(0)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
- What is the weather 2 days from now?

$$
\boldsymbol{\pi}(2)=\boldsymbol{\pi}(0) \boldsymbol{P}^{\mathbf{2}}=\left[\begin{array}{lll}
0.4375 & 0.1875 & 0.375
\end{array}\right]
$$

- Weather 7 days from now?

$$
\boldsymbol{\pi}(7)=\boldsymbol{\pi}(0) \boldsymbol{P}^{7}=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4
\end{array}\right]
$$

Example

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.5 & 0 & 0.5 \\
0.25 & 0.25 & 0.5
\end{array}\right]
$$

$$
\begin{aligned}
& \pi(0)=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \\
& \boldsymbol{\pi}(0)=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\pi}(7)=\boldsymbol{\pi}(0) \boldsymbol{P}^{\boldsymbol{7}}=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4
\end{array}\right] \\
& \boldsymbol{\pi}(7)=\boldsymbol{\pi}(0) \boldsymbol{P}^{\boldsymbol{7}}=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4
\end{array}\right]
\end{aligned}
$$

- After sufficient amount of time the expected weather distribution is independent of the starting value.
- Moreover, $\boldsymbol{\pi}(7)=\boldsymbol{\pi}(8)=\boldsymbol{\pi}(9)=\cdots=\left[\begin{array}{lll}0.4 & 0.2 & 0.4\end{array}\right]$
- This is called the stationary distribution.

Stationary Distribution

- π is called a stationary distribution of the Markov Chain if

$$
\pi=\pi P
$$

- That is, once the stationary distribution is reached, every subsequent X_{i} is a sample from the distribution π

How to use Markov Chains:

- Suppose you want to sample from a set $|\Omega|$, according to distribution π
- Construct a Markov Chain (\mathbf{P}) such that π is the stationary distribution
- Once stationary distribution is achieved, we get samples from the correct distribution.

Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

- Irreducible: A state j can be reached from any state i in some finite number of steps.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0.25 & 0.75
\end{array}\right]
$$

Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

- Irreducible: A state j can be reached from any state i in some finite number of steps.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0.25 & 0.75
\end{array}\right]
$$

- Aperiodic: A chain is not forced into cycles of fixed length between certain states

$$
\boldsymbol{P}=\left[\begin{array}{ccrl}
0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0.5 & 0.5 \\
0.5 & 0.5 & 0 & 0 \\
0.5 & 0.5 & 0 & 0
\end{array}\right]
$$

Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

- Irreducible: A state j can be reached from any state i in some finite number of steps.
- Aperiodic: A chain is not forced into cycles of fixed length between certain states

Theorem: For every ergodic Markov chain, there is a unique vector π such that for all initial probability vectors $\pi(0)$,

$$
\lim _{t \rightarrow \infty} \boldsymbol{\pi}(t)=\lim _{t \rightarrow \infty} \boldsymbol{\pi}(0) \boldsymbol{P}^{t}=\boldsymbol{\pi}
$$

Sufficient Condition: Detailed Balance

- In a stationary walk, for any pair of states j, k, the Markov Chain is as likely to move from j to k as from k to j.

$$
\pi_{j} P(j, k)=\pi_{k} P(k, j)
$$

- Also called reversibility condition.

Example: Random Walks

- Consider a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, with weights on edges ($\mathrm{w}(\mathrm{e})$)

Random Walk:

- Start at some node u in the graph G(V,E)
- Move from node u to node v with probability proportional to $\mathrm{w}(\mathrm{u}, \mathrm{v})$.

Random walk is a Markov chain

- State space = V
- $P(u, v)=w(u, v) / \Sigma w\left(u, v^{\prime}\right) \quad$ if $(u, v) \varepsilon E$

$$
=0 \quad \text { if }(u, v) \text { is not in } E
$$

Example: Random Walk

Random walk is ergodic if:

- Irreducible: A state j can be reached from any state i in some finite number of steps.

If G is connected.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0.25 & 0.75
\end{array}\right]
$$

- Aperiodic: A chain is not forced into cycles of fixed length between certain states If G is not bipartite

$$
\boldsymbol{P}=\left[\begin{array}{ccrl}
0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0.5 & 0.5 \\
0.5 & 0.5 & 0 & 0 \\
0.5 & 0.5 & 0 & 0
\end{array}\right]
$$

Example: Random Walk

Uniform random walk:

- Suppose all weights on the graph are 1
- $P(u, v)=1 / \operatorname{deg}(u) \quad$ (or 0$)$

Theorem: If G is connected and not bipartite, then the stationary distribution of the random walk is

$$
\pi_{u}=\operatorname{deg}(u) / 2|E|
$$

Example: Random Walk

Symmetric random walk:

- Suppose $P(u, v)=P(v, u)$

Theorem: If G is connected and not bipartite, then the stationary distribution of the random walk is

$$
\pi_{u}=1 /|V|
$$

Stationary Distribution

- π is called a stationary distribution of the Markov Chain if

$$
\pi=\pi P
$$

- That is, once the stationary distribution is reached, every subsequent X_{i} is a sample from the distribution π

How to use Markov Chains:

- Suppose you want to sample from a set $|\Omega|$, according to distribution π
- Construct a Markov Chain (P) such that π is the stationary distribution
- Once stationary distribution is achieved, we get samples from the correct distribution.

Metropolis-Hastings Algorithm (MCMC)

- Suppose we want to sample from a complex distribution $f(x)=p(x) / K$, where K is unknown or hard to compute
- Example: Bayesian Inference

Metropolis-Hastings Algorithm

- Start with any initial value x_{0}, such that $\mathrm{p}\left(\mathrm{x}_{0}\right)>0$
- Using current value x_{t-1}, sample a new point according some proposal distribution $q\left(x_{t} \mid x_{t-1}\right)$
- Compute $\alpha\left(x_{t} \mid x_{t-1}\right)=\min \left(1, \frac{p\left(x_{t}\right)}{p\left(x_{t-1}\right)} \frac{q\left(x_{t-1} \mid x_{t}\right)}{q\left(x_{t} \mid x_{t-1}\right)}\right)$
- With probability α accept the move to x_{t}, otherwise reject x_{t}

Why does Metropolis-Hastings work?

- Metropolis-Hastings describes a Markov chain with transition probabilities:

$$
P(x, y)=q(y \mid x) \min \left(1, \frac{p(y)}{p(x)} \frac{q(x \mid y)}{q(y \mid x)}\right)
$$

- We want to show that $f(x)=p(x) / K$ is the stationary distribution
- Recall sufficient condition for stationary distribution:

$$
\pi_{j} P(j, k)=\pi_{k} P(k, j)
$$

Why does Metropolis-Hastings work?

- Metropolis-Hastings describes a Markov chain with transition probabilities:

$$
P(x, y)=q(y \mid x) \min \left(1, \frac{p(y)}{p(x)} \frac{q(x \mid y)}{q(y \mid x)}\right)
$$

- Sufficient to show: $p(x) P(x, y)=p(y) P(y, x)$

Proof: Case 1

$$
P(x, y)=q(y \mid x) \min \left(1, \frac{p(y)}{p(x)} \frac{q(x \mid y)}{q(y \mid x)}\right)
$$

- Suppose $p(y) q(x \mid y)=p(x) q(y \mid x)$
- Then, $\quad P(x, y)=q(y \mid x)$
- Therefore $P(x, y) p(x)=q(y \mid x) p(x)=p(y) q(x \mid y)=P(y, x) p(y)$

Proof: Case 2

$$
P(x, y)=q(y \mid x) \min \left(1, \frac{p(y)}{p(x)} \frac{q(x \mid y)}{q(y \mid x)}\right)
$$

Suppose, $\quad p(y) q(x \mid y)>p(x) q(y \mid x)$

$$
\text { Then, } \quad \alpha(y \mid x)=1, \quad \alpha(x \mid y)=\frac{p(x) q(y \mid x)}{p(y) q(x \mid y)}
$$

$$
P(y, x) p(y)=q(x \mid y) \alpha(x \mid y) p(y)
$$

$$
\begin{aligned}
& =q(x \mid y) \frac{p(x) q(y \mid x)}{p(y) q(x \mid y)} p(y)=p(x) q(y \mid x) \\
& =p(x) q(y \mid x) \alpha(y \mid x)=p(x) P(x, y)
\end{aligned}
$$

- Proof of Case 3 is identical.

When is stationary distribution reached?

- Next class ...

