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Streaming Databases 
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Can’t hope to 
process a query on 
the entire data, but 

only on a small 
working set.  

Continuous/Standing Queries: 
Every time a new data item 
enters the system, 
(conceptually) re-evalutate the 
answer to the query  



Examples of Streaming Data 

• Internet & Web traffic 
– Search/browsing history of users: Want to predict which ads/content to 

show the user based on their history.  
Can’t look at the entire history at runtime  

 

• Continuous Monitoring 
– 6 million surveillance cameras in London 

– Video feeds from these cameras must be processed in real time 

 

• Weather monitoring 

• … 
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Processing Streams 

• Summarization 
– Maintain a small size sketch (or summary) of the stream 

– Answering queries using the sketch 

– E.g., random sample 

– later in the course – AMS, count min sketch, etc 

– Types of queries: # distinct elements, most frequent elements in the 
stream, aggregates like sum, min, max, etc.  

 

• Window Queries 
– Queries over a recent k size window of the stream 

– Types of queries: alert if there is a burst of traffic in the last 1 minute, 
denial of service identification, alert if stock price > 100, etc.  
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Streaming Algorithms 

• Sampling 
– We have already seen this.  

• Filtering 
– “… does the incoming email address appear in a  

set of white listed addresses … ” 

• Counting Distinct Elements 
– “… how many unique users visit cnn.com …” 

• Heavy Hitters 
– “… news articles contributing to >1% of all traffic …” 

• Online Aggregation 
– “… Based on seeing 50% of the data the answer is in [25,35] …” 
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This Class 



FILTERING 
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Problem 

• A set S containing m values 
– A whitelist of a billion non-spam email addresses 

 

• Memory with n bits.  
– Say 1 GB memory 

 

• Goal: Construct a data structure that can efficient check whether 
a new element is in S 
– Returns TRUE with probability 1, when element is in S 

– Returns FALSE with high probability (1-ε), when element is not in S  
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Bloom Filter 

• Consider a set of hash functions {h1, h2, .., hk}, hi: S  [1, n] 

 

Initialization:  

• Set all n bits in the memory to 0.  

 

Insert a new element ‘a’:   

• Compute h1(a), h2(a), …, hk(a). Set the corresponding bits to 1. 

 

Check whether an element ‘a’ is in S:  

•  Compute h1(a), h2(a), …, hk(a).  
If all the bits are 1, return TRUE.  
Else, return FALSE 

Lecture 6 : 590.02 Spring 13 9 



Analysis 

If a is in S:  

• If h1(a), h2(a), …, hk(a) are all set to 1. 

• Therefore, Bloom filter returns TRUE with probability 1. 

 

If a not in S: 

• Bloom filter returns TRUE if each hi(a) is 1 due to some other 
element 

Pr[bit j is 1 after m insertions] = 1 – Pr[bit j is 0 after m insertions] 

   = 1 – Pr[bit j was not set by k x m hash functions] 

   = 1 – (1 – 1/n)km 

Pr[Bloom filter returns TRUE]  = {1 – (1 – 1/n)km}k} ≈ (1 – e-km/n)k  
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Example 

• Suppose there are m = 109 emails in the white list.  

• Suppose memory size of 1 GB (8 x 109 bits) 

 

k = 1 

• Pr[Bloom filter returns TRUE | a not in S] = 1 – e-m/n  

      = 1 – e-1/8 = 0.1175 

k = 2 

• Pr[Bloom filter returns TRUE | a not in S] = (1 – e-2m/n)2 

      = (1 – e-1/4)2 ≈ 0.0493 
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Example 
• Suppose there are m = 109 emails in the white list.  
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Number of hash functions 

Exercise:  
    What is the optimal number of  
    hash functions given m=|S| and n. 



Summary of Bloom Filters 

• Given a large set of elements S, efficiently check whether a new 
element is in the set.  

 

• Bloom filters use hash functions to check membership 
– If a is in S, return TRUE with probability 1 

– If a is not in S, return FALSE with high probability  

– False positive error depends on |S|, number of bits in the memory and 
number of hash functions 
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COUNTING DISTINCT ELEMENTS 
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Distinct Elements 

INPUT:  

• A stream S of elements from a domain D 
– A stream of logins to a website 

– A stream of URLs browsed by a user 

• Memory with n bits 

 

OUTPUT 

• An estimate of the number of distinct elements in the stream 
– Number of distinct users logging in to the website 

– Number of distinct URLs browsed by the user 
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FM-sketch 

• Consider a hash function h:D  {0,1}L which uniformly hashes 
elements in the stream to L bit values 

 

• IDEA: The more distinct elements in S, the more distinct hash 
values are observed. 

 

• Define: Tail0(h(x)) = number of trailing consecutive 0’s 
– Tail0(101001) = 0 

– Tail0(101010) = 1 

– Tail0(001100) = 2 

– Tail0(101000) = 3 

– Tail0(000000) = 6 (=L) 
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FM-sketch 

Algorithm 

• For all x ε S,  

– Compute k(x) = Tail0(h(x)) 

• Let K = max x ε S k(x) 

• Return F’ = 2K 
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Analysis 

Lemma: Pr[ Tail0(h(x)) ≥ j ] = 2-j 

 

Proof:  

• Tail0(h(x)) ≥ j implies at least the last j bits are 0 

 

• Since elements are hashed to L-bit string uniformly at random, 
the probability is (½)j = 2-j  
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Analysis 

• Let F be the true count of distinct elements, and  
let c>2 be some integer. 

 

• Let k1 be the largest k such that 2k < cF 

• Let k2 be the smallest k such that 2k > F/c 

 

• If K (returned by FM-sketch) is between k2 and k1, then  

F/c ≤ F’ ≤ cF 
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Analysis 

• Let zx(k) = 1 if Tail0(h(x)) ≥ k 
                = 0 otherwise 

• E[zx(k)] = 2-k       Var(zx(k)) = 2-k(1 – 2-k) 

 

• Let X(k) = ΣxεS zx(k) 

 

• We are done if we show with high probability that  
  X(k1) = 0 and X(k2) ≠ 0 
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Analysis 

Lemma:   Pr[X(k1) ≥ 1]   ≤  1/c 

Proof:       Pr[X(k1) ≥ 1]   ≤   E(X(k1))                  Markov Inequality 
                                      =  F 2-k1  ≤ 1/c 

 

Lemma:    Pr[X(k2) = 0]  ≤  1/c 

Proof:        Pr[X(k2) = 0]  =   Pr[X(k2) – E(X(k2))  =  E(X(k2))] 
                                       ≤   Pr[|X(k2) – E(X(k2))| ≥  E(X(k2))] 
       ≤   Var(X(k2)) / E(X(k2))2       Chebyshev Ineq. 
        
       ≤   2k2/F  ≤ 1/c 

Theorem: If FM-sketch returns F’, then for all c > 2,  
      F/c ≤ F’ ≤ cF with probability 1-2/c 

Lecture 6 : 590.02 Spring 13 21 



Boosting the success probability 

• Construct s independent FM-sketches (F’1, F’2, …, F’s) 

• Return the median F’med 

 

Q: For any δ, what is the value of s s.t. P[F/c ≤ F’med ≤ cF] > 1 - δ ? 

Lecture 6 : 590.02 Spring 13 22 



Analysis 

• Let c > 4, and xi = 0 if F/c ≤ F’i ≤ cF, and 1 otherwise 

•  ρ = E[xi]  
    = 1 - Pr[F/c ≤ F’i ≤ cF] ≤ 2/c  < ½ 

 

• Let X = Σi xi           E(X) = sρ 

 

Lemma: If X < s/2, then F/c ≤ F’med ≤ cF       (Exercise) 

 

We are done if we show that Pr[X ≥ s/2] is small.  
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Analysis 

Pr[ X ≥ s/2 ]  =   Pr[ X – E(X) = s/2 – E(X) ] 

            ≤   Pr[ |X – E(X)| ≥ s/2 – sρ ] 

            =   Pr[ |X – E(X)| ≥ (1/2ρ – 1) sρ ] 

              ≤   2exp( – (1/2ρ – 1)2 sρ/3 )           Chernoff bounds 

 

Thus, to bound this probability by δ, we need s to be:  
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Boosting the success probability 

In practice,  

• Construct sk independent FM sketches 

• Divide the sketches into s groups of k each 

• Compute the mean estimate in each group 

• Return the median of the means.  
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Summary 

• Counting the number of distinct elements exactly takes O(N) 
space and Ω(N) time, where N is the number of distinct elements 

 

• FM-sketch estimates the number of distinct elements in O(log N) 
space and Θ(N) time 

 

• FM-sketch: maximum number of trailing 0s in any hash value 

 

• Can get good estimates with high probability by computing the 
median of many independent FM-sketches.  
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