Streaming Algorithm: Filtering \& Counting Distinct Elements

CompSci 590.02
Instructor: AshwinMachanavajjhala

Streaming Databa

Continuous/Standing Queries: Every time a new data item enters the system, (conceptually) re-evalutate the answer to the query

Examples of Streaming Data

- Internet \& Web traffic
- Search/browsing history of users: Want to predict which ads/content to show the user based on their history.
Can't look at the entire history at runtime
- Continuous Monitoring
- 6 million surveillance cameras in London
- Video feeds from these cameras must be processed in real time
- Weather monitoring

Processing Streams

- Summarization
- Maintain a small size sketch (or summary) of the stream
- Answering queries using the sketch
- E.g., random sample
- later in the course - AMS, count min sketch, etc
- Types of queries: \# distinct elements, most frequent elements in the stream, aggregates like sum, min, max, etc.
- Window Queries
- Queries over a recent k size window of the stream
- Types of queries: alert if there is a burst of traffic in the last 1 minute, denial of service identification, alert if stock price >100, etc.

Streaming Algorithms

- Sampling
- We have already seen this.
- Filtering
- "... does the incoming email address appear in a set of white listed addresses ..."
- Counting Distinct Elements
- "... how many unique users visit cnn.com ..."
- Heavy Hitters
- "... news articles contributing to $>1 \%$ of all traffic ..."
- Online Aggregation
- "... Based on seeing 50% of the data the answer is in $[25,35]$..."

Streaming Algorithms

- Sampling
- We have already seen this.
- Filtering
- "... does the incoming email address appear in a set of white listed addresses ..."
- Counting Distinct Elements
- "... how many unique users visit cnn.com ..."
- Heavy Hitters
- "... news articles contributing to $>1 \%$ of all traffic ..."
- Online Aggregation
- "... Based on seeing 50% of the data the answer is in $[25,35]$..."

FILTERING

Problem

- A set S containing m values
- A whitelist of a billion non-spam email addresses
- Memory with n bits.
- Say 1 GB memory
- Goal: Construct a data structure that can efficient check whether a new element is in S
- Returns TRUE with probability 1 , when element is in S
- Returns FALSE with high probability ($1-\varepsilon$), when element is not in S

Bloom Filter

- Consider a set of hash functions $\left\{h_{1}, h_{2}, . ., h_{k}\right\}, h_{i}: S \rightarrow[1, n]$

Initialization:

- Set all n bits in the memory to 0 .

Insert a new element ' a ':

- Compute $h_{1}(a), h_{2}(a), \ldots, h_{k}(a)$. Set the corresponding bits to 1 .

Check whether an element ' a ' is in S:

- Compute $h_{1}(a), h_{2}(a), \ldots, h_{k}(a)$. If all the bits are 1, return TRUE. Else, return FALSE

Analysis

If \boldsymbol{a} is in S :

- If $h_{1}(a), h_{2}(a), \ldots, h_{k}(a)$ are all set to 1 .
- Therefore, Bloom filter returns TRUE with probability 1.

If a not in S:

- Bloom filter returns TRUE if each hi(a) is 1 due to some other element
$\operatorname{Pr}[$ bit j is 1 after m insertions] $=1-\operatorname{Pr}[$ bit j is 0 after m insertions]

$$
\begin{aligned}
& =1-\operatorname{Pr}[\text { bit } j \text { was not set by } k \times m \text { hash functions }] \\
& =1-(1-1 / n)^{\mathrm{km}}
\end{aligned}
$$

$\operatorname{Pr}\left[\right.$ Bloom filter returns TRUE] $\left.=\left\{1-(1-1 / n)^{k m}\right\}^{k}\right\} \approx\left(1-e^{-k m / n}\right)^{k}$

Example

- Suppose there are $\mathrm{m}=10^{9}$ emails in the white list.
- Suppose memory size of $1 \mathrm{~GB}\left(8 \times 10^{9}\right.$ bits)
$k=1$
- $\operatorname{Pr[Bloom~filter~returns~TRUE~\| ~a~not~in~S]~=~} 1-e^{-m / n}$

$$
=1-\mathrm{e}^{-1 / 8}=0.1175
$$

$\boldsymbol{k}=\mathbf{2}$

- $\operatorname{Pr}\left[\right.$ Bloom filter returns TRUE | a not in S] $=\left(1-\mathrm{e}^{-2 \mathrm{~m} / \mathrm{n}}\right)^{2}$

$$
=\left(1-\mathrm{e}^{-1 / 4}\right)^{2} \approx 0.0493
$$

Example

- Suppose there are $\mathrm{m}=10^{9}$ emails in the white list.
- Suppose memory size of $1 \mathrm{~GB}\left(8 \times 10^{9}\right.$ bits $)$

Summary of Bloom Filters

- Given a large set of elements S, efficiently check whether a new element is in the set.
- Bloom filters use hash functions to check membership
- If a is in S, return TRUE with probability 1
- If a is not in S, return FALSE with high probability
- False positive error depends on $|S|$, number of bits in the memory and number of hash functions

COUNTING DISTINCT ELEMENTS

Distinct Elements

INPUT:

- A stream S of elements from a domain D
- A stream of logins to a website
- A stream of URLs browsed by a user
- Memory with n bits

OUTPUT

- An estimate of the number of distinct elements in the stream
- Number of distinct users logging in to the website
- Number of distinct URLs browsed by the user

FM-sketch

- Consider a hash function $h: D \rightarrow\{0,1\}^{\mathrm{L}}$ which uniformly hashes elements in the stream to L bit values
- IDEA: The more distinct elements in S , the more distinct hash values are observed.
- Define: Tail $_{0}(\mathrm{~h}(\mathrm{x}))=$ number of trailing consecutive 0's
- Tail $_{0}(101001)=0$
- Tail $_{0}(101010)=1$
- Tail $_{0}(001100)=2$
- Tail $_{0}(101000)=3$
- Tail $_{0}(000000)=6(=\mathrm{L})$

FM-sketch

Algorithm

- For all $x \in S$,
- Compute $k(x)=$ Tail $_{0}(h(x))$
- Let $K=\max _{x \varepsilon S} k(x)$
- Return $\mathrm{F}^{\prime}=2^{\mathrm{K}}$

Analysis

Lemma: $\operatorname{Pr}\left[\operatorname{Tail}_{0}(\mathrm{~h}(\mathrm{x})) \geq \mathrm{j}\right]=2^{-\mathrm{j}}$

Proof:

- Tail $_{0}(\mathrm{~h}(\mathrm{x})) \geq \mathrm{j}$ implies at least the last j bits are 0
- Since elements are hashed to L-bit string uniformly at random, the probability is $(1 / 2)^{j}=2^{-j}$

Analysis

- Let F be the true count of distinct elements, and let c>2 be some integer.
- Let k_{1} be the largest k such that $2^{\mathrm{k}}<\mathrm{cF}$
- Let k_{2} be the smallest k such that $2^{k}>F / c$
- If K (returned by $F M$-sketch) is between k_{2} and k_{1}, then

$$
\mathrm{F} / \mathrm{c} \leq \mathrm{F}^{\prime} \leq \mathrm{cF}
$$

Analysis

- Let $z_{\mathrm{x}}(\mathrm{k})=1$ if $\operatorname{Tail}_{0}(\mathrm{~h}(\mathrm{x})) \geq \mathrm{k}$

$$
=0 \text { otherwise }
$$

- $E\left[z_{x}(k)\right]=2^{-k} \quad \operatorname{Var}\left(z_{x}(k)\right)=2^{-k}\left(1-2^{-k}\right)$
- Let $X(k)=\Sigma_{x \varepsilon S} Z_{x}(k)$
- We are done if we show with high probability that

$$
X(k 1)=0 \text { and } X(k 2) \neq 0
$$

Analysis

Lemma: $\operatorname{Pr}\left[X\left(k_{1}\right) \geq 1\right] \leq 1 / c$
Proof: $\operatorname{Pr}\left[X\left(k_{1}\right) \geq 1\right] \leq E\left(X\left(k_{1}\right)\right)$
Markov Inequality

$$
=F 2^{-k 1} \leq 1 / c
$$

Lemma: $\operatorname{Pr}[X(k 2)=0] \leq 1 / c$
Proof:

$$
\begin{aligned}
\operatorname{Pr}[X(k 2)=0] & =\operatorname{Pr}[X(k 2)-E(X(k 2))=E(X(k 2))] \\
& \leq \operatorname{Pr}[|X(k 2)-E(X(k 2))| \geq E(X(k 2))] \\
& \leq \operatorname{Var}(X(\mathrm{k} 2)) / E(X(k 2))^{2} \quad \text { Chebyshev Ineq. } \\
& \leq 2^{k 2} / F \leq 1 / c
\end{aligned}
$$

Theorem: If FM-sketch returns F^{\prime}, then for all $\mathrm{c}>2$, $\mathrm{F} / \mathrm{c} \leq \mathrm{F}^{\prime} \leq \mathrm{cF}$ with probability 1-2/c

Boosting the success probability

- Construct s independent FM-sketches ($\mathrm{F}_{1}, \mathrm{~F}^{\prime}{ }_{2}, \ldots, \mathrm{~F}_{\mathrm{s}}$)
- Return the median $\mathrm{F}_{\text {med }}$

Q: For any δ, what is the value of s s.t. $P\left[F / c \leq F^{\prime}\right.$ med $\left.\leq c F\right]>1-\delta$?

Analysis

- Let $c>4$, and $x_{i}=0$ if $F / c \leq F_{i}^{\prime} \leq c F$, and 1 otherwise
- $\rho=E\left[x_{i}\right]$

$$
=1-\operatorname{Pr}\left[F / c \leq F_{i}^{\prime} \leq c F\right] \leq 2 / c<1 / 2
$$

- Let $X=\Sigma_{i} x_{i} \quad E(X)=s \rho$

Lemma: If $X<s / 2$, then $F / c \leq F^{\prime}$ med $\leq c F \quad$ (Exercise)

We are done if we show that $\operatorname{Pr}[X \geq s / 2]$ is small.

Analysis

$$
\begin{aligned}
\operatorname{Pr}[X \geq s / 2] & =\operatorname{Pr}[X-E(X)=s / 2-E(X)] \\
& \leq \operatorname{Pr}[|X-E(X)| \geq s / 2-s \rho] \\
& =\operatorname{Pr}[|X-E(X)| \geq(1 / 2 \rho-1) s \rho] \\
& \leq 2 \exp \left(-(1 / 2 \rho-1)^{2} s \rho / 3\right) \quad \text { Chernoff bounds }
\end{aligned}
$$

Thus, to bound this probability by δ, we need s to be:

$$
s \geq \frac{3 \rho}{(1 / 2-\rho)^{2}} \ln \left(\frac{2}{\delta}\right)
$$

Boosting the success probability

In practice,

- Construct sk independent FM sketches
- Divide the sketches into s groups of k each
- Compute the mean estimate in each group
- Return the median of the means.

Summary

- Counting the number of distinct elements exactly takes O(N) space and $\Omega(N)$ time, where N is the number of distinct elements
- FM-sketch estimates the number of distinct elements in $\mathrm{O}(\log \mathrm{N})$ space and $\Theta(N)$ time
- FM-sketch: maximum number of trailing 0 s in any hash value
- Can get good estimates with high probability by computing the median of many independent FM-sketches.

