Graph Algorithms & Iteration on Map-Reduce

CompSci 590.03
Instructor: Ashwin Machanavajjhala
Recap: Map-Reduce

\[
\text{map } (k_1, v_1) \rightarrow \text{list}(k_2, v_2);
\text{reduce } (k_2, \text{list}(v_2)) \rightarrow \text{list}(k_3, v_3).
\]
Recap: Optimizing Joins

R1: keys 5, 8
Input: S1, S4, T1, T5
Output: 2 tuples

R2: key 7
Input: S2, S3, T2, T3, T4
Output: 6 tuples

R3: key 9
Input: S5, S6, T6
Output: 2 tuples
max-reducer-input = 5
max-reducer-output = 6

R1: key 1
Input: S2, S3, S4, S6, T3, T4, T5, T6
Output: 4 tuples

R2: key 2
Input: S2, S3, S5, T2, T4, T6
Output: 3 tuples

R3: key 3
Input: S1, S2, S3, T1, T2, T3
Output: 3 tuples

R1: key 1
Input: S1, S2, S3, T1, T2
Output: 3 tuples

R2: key 2
Input: S2, S3, T3, T4
Output: 4 tuples

R3: key 3
Input: S4, S5, S6, T5, T6
Output: 3 tuples
max-reducer-input = 5
max-reducer-output = 4
This Class

- Graph Processing on Map Reduce
Graph Algorithms

• Diameter Estimation
 – Length of the longest shortest path in the graph

• Connected Components
 – Undirected s-t connectivity (USTCON): check whether two nodes are connected.

• PageRank
 – Calculate importance of nodes in a graph

• Random Walks with Restarts
 – Similarity function that encodes proximity of nodes in a graph
Connected Components

• What is an efficient algorithm for computing the connected components in a graph?
HCC [Kang et al ICDM ‘09]

• Each node’s label $l(v)$ is initialized to itself

• In each iteration

 $l(v) = \min \{l(v), \min_{y \in \text{neigh}(v)} l(y)\}$

• $O(d)$ iterations ($d =$ diameter of the graph)

 $O(|V| + |E|)$ communication per iteration
GIM-V

• Generalized Iterative Matrix-Vector Multiplication

Connected Components
• Let c^h denote the component-id of a vertex in iteration h

• $c^{h+1} = M \times_G c^h$
 - $c^{h+1}[i] = \min(c^{h+1}[i], \ c^{\text{new}}[i])$
 - $c^{\text{new}}[i] = \min_j (m[i,j] \times c^h[j])$

• Keep iterating till $c^{h+1} = c^h$.

Step 1: Generate $m[j,j] \times c[j]$
Step 2: Aggregate to find the min for each node
GIM-V and Page Rank

\[p = (cE^T + (1 - c)U)p \]

- \(p^{next} = M \times_G p^{cur} \)
- \(p^{next}[i] = (1-c)/n + \text{sum}_j (c \times m[i,j] \times p^{cur}[j]) \)
GIM-V BL

- We assumed each edge in the graph is represented using a different row.
- Can speed up processing if each row represents a bxb sub matrix

The format of a matrix block with k nonzero elements is

\[
\begin{bmatrix}
B_{0,0} & B_{0,1} & B_{0,2} \\
B_{1,0} & & \\
B_{2,0} & &
\end{bmatrix}
\]

This block encoding forces nearby edges in the adjacency blocks with at least one nonzero elements are saved to disk.

After grouping, \(\text{BASE Stage 2} \)

\[\text{Stage1-Reduce} \text{ (} K, V[1..m] \text{)} \]

\[\text{Stage2-Reduce} \text{ (} K, V[1..m] \text{)} \]

Input

\(\text{Algorithm 1} \)

\[\text{begin} \]

\[\text{Stage1-Map} \text{ (} K, V \text{)} \]

\[\text{Output} \text{ (} K, V[1..m] \text{)} \]

This two-stage algorithm is run iteratively until the application-specific convergence criterion is met. In Algorithm 1.

\[\text{BL: Block Multiplication} \]

\[\text{GIM-V} \]

\[\text{V} \]

\[\text{BASE Stage 2.} \]
Connected Components

- Iterative Matrix Vector products need $O(d)$ map reduce steps to find the connected components in a graph.

- Diameter of a graph can be large.
 - > 20 for many real world graphs.

- Each map reduce step requires writing data to disk + remotely reading data from disk (I/O + communication)

- Can we find connected components using a smaller number of iterations?
Hash-to-all

• Maintain a cluster at each node
 – Current estimate of connected component

• Initialize cluster(v) = Neighbors(v) U {v}

• Each node sends its cluster to all nodes in the cluster
 – Map: (v, C(v)) → {(u, C(v))} for all u in C(v)

• Union all the clusters sent to a node v
 – Reduce: (u, {C1, C2, ..., Ck}) → (u, C1 U C2 U ... U Ck)
Hash-to-all

• Number of rounds = \log d
 – Proof?

• Communication per round = O(n|V| + |E|)
 – Each node is replicated at most n times, where n is the maximum size of a connected component.
Hash-to-Min

• Each node v maintains a cluster $C(v)$ which is initialized to $\{v\} \cup \text{Neighbors}(v)$

• In each iteration

 Map:
 \[
 v_{\text{min}} = \min \{C(v)\}
 \]
 Send $C(v)$ to v_{min}
 Send v_{min} to nodes in $C(v)$

 Reduce:
 $C(v)$ is the union of all incoming clusters
Hash-to-Min

- Each node v maintains a cluster $C(v)$ which is initialized to \{v\} U Neighbors(v)

- In each iteration

 Map:
 \[
 v_{\text{min}} = \min \{C(v)\}
 \]
 Send $C(v)$ to v_{min}
 Send v_{min} to nodes in $C(v)$

 Reduce:
 $C(v)$ is the union of all incoming clusters

<table>
<thead>
<tr>
<th>v</th>
<th>$C(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>2</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>3</td>
<td>2,3</td>
</tr>
<tr>
<td>4</td>
<td>2,4,5</td>
</tr>
<tr>
<td>5</td>
<td>4,5,6</td>
</tr>
<tr>
<td>6</td>
<td>5,6</td>
</tr>
</tbody>
</table>
Hash-to-Min

• Each node v maintains a cluster $C(v)$ which is initialized to
 \(\{v\} \cup \text{Neighbors}(v) \)

• In each iteration

Map:
 \[v_{\text{min}} = \min \{C(v)\} \]
 Send $C(v)$ to v_{min}
 Send v_{min} to nodes in $C(v)$

Reduce:
 $C(v)$ is the union of all incoming clusters

<table>
<thead>
<tr>
<th>v</th>
<th>$C(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>2</td>
<td>1,2,3,4,5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1,4,5,6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Hash-to-Min

- Each node v maintains a cluster $C(v)$ which is initialized to $\{v\} \cup \text{Neighbors}(v)$
- In each iteration

 Map:

 $v_{min} = \min \{C(v)\}$

 Send $C(v)$ to v_{min}

 Send v_{min} to nodes in $C(v)$

 Reduce:

 $C(v)$ is the union of all incoming clusters

<table>
<thead>
<tr>
<th>v</th>
<th>$C(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2,3,4,5,6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Hash-to-Min

• In the end, cluster of vertex with minimum id contains the entire connected component. Cluster of other vertices in the component is a singleton having the minimum vertex.

• Communication cost: Assuming a random assignment of ids to vertices, expected communication cost is $O(k(|V| + |E|))$ in iteration k

• Number of iterations: ???
 – On a path graph: $4 \log n$
 – In a general graph: $4 \log d$ (conjecture)
Leader Algorithm

• Let π be an arbitrary total order over the vertices.
• Begin with $l(v) = v$, and all nodes active

In each iteration:
• Let $C(v)$ be the connected component containing v
• Let $\Gamma(v)$ be the neighbors of $C(v)$ that are not in $C(v)$
• Call each active node a leader with probability $\frac{1}{2}$.
• For each active non-leader w, find $w^* = \min(\Gamma(w))$
• If w^* is not empty and $l(w^*)$ is a leader, then mark w as passive, and relabel each node with label w by $l(w^*)$
Correctness

• If at any point of time two nodes s and t have the same label, then they are connected in G.

• Consider an iteration, when $l(s) \neq l(t)$ before the iteration, but $l(s) = l(t)$ after.

• This means, $l(s) = w$ (non-leader node), $l(t) = w^*$

• By induction, s is connected to all nodes in $\Gamma(w)$, t is connected to all nodes in $\Gamma(w^*)$, and w is connected to w^*.

• Therefore, s and t are connected.
Number of Iterations

• Every connected component has a unique label after $O(\log N)$ rounds with high probability

• Suppose there is some connected component with two active labels.

• An active label w survives an iteration if:
 1. w is marked a leader
 2. w is not marked a leader and $l(w^*)$ is not marked a leader

• Hence, in every iteration, the expected number of active labels reduces by $\frac{1}{4}$.
Summary

• No native support for iteration in Map-Reduce
 – Each iteration writes/reads data from disk leading to overheads

• Many graph algorithms need iterative computation
 – Need to design algorithms that can minimize number of iterations
Hash-Greater-to-Min

- Each vertex \(v \) maintains:
 - \(v_{\text{min}} \): minimum node
 - \(C(v) \): cluster

- Run Hcc 2 times ...
 Map: send \(v_{\text{min}} \) to neighbors
 Reduce: Compute new \(v_{\text{min}} \) and add it to \(C(v) \)

- Run Greater to min step once ...
 Map: Let \(C_{\geq v} \) be all nodes in \(C(v) \) that have id \(\geq v \)
 - Send \(v_{\text{min}} \) in to all nodes in \(C_{\geq v} \)
 - Send \(C_{\geq v} \) to \(v_{\text{min}} \)
 Reduce: Union the incoming clusters.
Hash-Greater-to-Min

• Theorem: The algorithm completes in expectation $3 \log n$ steps (over random node orderings), where n is the size of the largest component.

• Lemma: Let $GT(v)$ be the set of nodes where v is the minimum node (after a greater-to-min step). Then $GT(v) = \text{set of nodes in } C(v) \text{ that have ids } \geq v$.
Proof of Theorem

• After 3K rounds, let Mk be the nodes that appear as minimum on some nodes.

• GTk(m) = set of nodes where m is the minimum

• GTk(m) is disjoint from GTk(m’) for all m and m’.

• Construct a graph G_{Mk}, with vertices from Mk, and (m,m’) is an edge if there exist v in GTk(m) and v’ in GTk(m’) such that (v,v’) is an edge in the original graph.
Proof of Theorem

• Consider a connected component in GMk (and let |Mk| = s)

• If m < m’ are connected in GMk, then m’ will no longer be a minimum node after 3 rounds:
 – There exist v in GTk(m) and v’ in GTk(m’) that are neighbors in G
 – In one step of Hcc, v send m to v’
 – In second step of Hcc, v’ sends m’ to m