
Asynchronous	 Graph	 Processing	

CompSci	 590.03	
Instructor:	 Ashwin	 Machanavajjhala	

	
(slides	 adapted	 from	 Graphlab	 talks	 at	 UAI’10	 &	 VLDB	 ’12	 	 	

and	 Gouzhang	 Wang’s	 talk	 at	 CIDR	 2013)	

1	 Lecture	 15	 :	 590.02	 Spring	 13	

Recap:	 Pregel	
3 6 2 1

Superstep 0

6 6 2 6

Superstep 1

6 6 6 6

Superstep 2

6 6 6 6

Superstep 3

Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137

Lecture	 15	 :	 590.02	 Spring	 13	 2	

Graph	 Processing	

Lecture	 15	 :	 590.02	 Spring	 13	 3	

Dependency	
Graph	

IteraBve	
ComputaBon	

My Interests

Friends
Interests

Local	
Updates	

This	 Class	
•  Asynchronous	 Graph	 Processing	

Lecture	 15	 :	 590.02	 Spring	 13	 4	

Example:	 Belief	 PropagaBon	

•  Want	 to	 compute	 marginal	 distribuBon	 at	 each	 node.	 	

Lecture	 15	 :	 590.02	 Spring	 13	 5	

Running Example: Belief Propagation

• Core procedure for many inference tasks in
graphical models
– Example: MRF for Image Restoration

12

is scheduled for processing, instead of only using messages sent
during the previous tick as in the BSP model. This can further in-
crease the convergence rate since data updates can be incorporated
as soon as they become available. For example, in belief propa-
gation, directly using the most recent updates can significantly im-
prove performance over synchronous update methods that have to
wait until the end of each tick [12].

Although asynchronous execution policies can improve the con-
vergence rate for graph processing applications, asynchronous par-
allel programs are much more difficult to write, debug, and test than
synchronous programs. If an asynchronous implementation does
not output the expected result, it is difficult to locate the source of
the problem: it could be the algorithm itself, a bug in the asyn-
chronous implementation, or simply that the application does not
converge to the same fixpoint under synchronous and asynchronous
executions. Although several asynchronous graph processing plat-
forms have been proposed which attempt to mitigate this problem
by providing some asynchronous programming abstractions, their
abstractions still require users to consider low-level concurrency is-
sues [17, 21]. For example in GraphLab, the unit of calculation is a
single update task over a vertex [21]. When an update task is sched-
uled, it computes based on whatever data is available on the vertex
itself and possibly its neighbors. But since adjacent vertices can be
scheduled simultaneously, users need to worry about read and write
conflicts and choose from different consistency levels to avoid such
conflicts themselves. In Galois, different processes can iterate over
the vertices simultaneously, updating their data in an optimistic par-
allel manner [17]. Users then need to specify which method calls
can safely be interleaved without leading to data races and how
the effects of each method call can be undone when conflicts are
detected. Such conflicts arise because general asynchronous exe-
cution models allow parallel threads to communicate at any time,
not just at the tick boundaries. The resulting concurrent execution
is highly dependent on process scheduling and is not deterministic.
Thus, asynchronous parallel frameworks have to make concurrency
issues explicit to the users.

For these reasons, a synchronous iterative model is clearly the
programming model of choice due to its simplicity. Users can fo-
cus initially on “getting the application right,” and they can eas-
ily debug their code and reason about program correctness without
having to worry about low-level concurrency issues. Then, hav-
ing gained confidence that their encoded graph application logic is
bug-free, users would like to be able to migrate to asynchronous ex-
ecution for better performance without reimplementing their appli-
cations; they should just be able to change the underlying execution
policy in order to switch between synchronous and asynchronous
execution.

Unfortunately, this crucially important development cycle — go-
ing from a simple synchronous specification of a graph process-
ing application to a high-performance asynchronous execution —
is not supported by existing frameworks. Indeed, it is hard to imag-
ine switching from the message-passing communication style of a
synchronous graph program to the shared-variable communication
used in an asynchronous one without reimplementing the applica-
tion. However, in this paper we show such reimplementation is
unnecessary: most of the benefit of asynchronous processing can
be achieved in a message-passing setting by allowing users to ex-
plicitly relax certain constraints imposed on message delivery by
the BSP model.
Contributions of this Paper. In this paper, we combine synchronous
programming with asynchronous execution for large-scale graph
processing by cleanly separating application logic from execution
policies. We have designed and implemented a large scale par-

allel iterative graph processing framework named GRACE, which
exposes a synchronous iterative graph programming model to the
users while enabling both synchronous and user-specified asyn-
chronous execution policies. Our work makes the following three
contributions:

(1) We present GRACE, a general parallel graph processing frame-
work that provides an iterative synchronous programming model
for developers. The programming model captures data dependen-
cies using messages passed between neighboring vertices like the
BSP model (Section 3).

(2) We describe the parallel runtime of GRACE, which follows
the BSP model for executing the coded application. At the same
time GRACE allows users to flexibly specify their own (asynchro-
nous) execution policies by explicitly relaxing data dependencies
associated with messages in order to achieve fast convergence. By
doing so GRACE maintains both fast convergence through cus-
tomized (asynchronous) execution policies of the application and
automatic scalability through the BSP model at run time (Section 4).

(3) We experiment with four large-scale real-world graph pro-
cessing applications written in a shared-memory prototype imple-
mentation of GRACE (Section 5). Our experiments show that even
though programs in GRACE are written synchronously, we can
achieve convergence rates and performance similar to that of com-
pletely general asynchronous execution engines, while still main-
taining nearly linear parallel speedup by following the BSP model
to minimize concurrency control overheads (Section 6).

We discuss related work in Section 7 and conclude in Section 8.
We begin our presentation by introducing iterative graph processing
applications in Section 2.

2. ITERATIVE GRAPH PROCESSING
Iterative graph processing applications are computations over

graphs that update data in the graph in iterations or ticks. During
each tick the data in the graph is updated, and the computation
terminates after a fixed number of ticks have been executed [9] or
the computation has converged [13]. We use the belief propagation
algorithm on pairwise Markov random fields (MRFs) as a running
example to illustrate the computation patterns of an iterative graph
processing application [26].
Running Example: Belief Propagation on Pairwise MRF. The
pairwise MRF is a widely used undirected graphical model which
can compactly represent complex probability distributions. Con-
sider n discrete random variables X = {X

1

, X
2

, · · · , X
n

} taking
on values X

i

2 ⌦, where ⌦ is the sample space.1 A pairwise MRF
is an undirected graph G(V,E) where vertices represent random
variables and edges represent dependencies. Each vertex u is as-
sociated with the potential function �

u

: ⌦ 7! R+ and each edge
e
u,v

is associated with the potential function �
u,v

: ⌦⇥⌦ 7! R+.
The joint distribution is proportional to the product of the potential
functions:

p(x
1

, x
2

, · · · , x
n

) /
Y

u2V

�
u

(x
u

) ·
Y

(u,v)2E

�
u,v

(x
u

, x
v

)

Computing the marginal distribution for a random variable (i.e.,
a vertex) is the core procedure for many learning and inference
tasks in MRF. Belief propagation (BP), which works by repeat-
edly passing messages over the graph to calculate marginal distri-
butions until the computation converges, is one of the most popular
algorithms used for this task [12]. The message m

u!v

(x
v

) sent

1In general, each random variable can have its own sample space.
For simplicity of discussion, we assume that all the random vari-
ables have the same sample space.

Belief	 PropagaBon	
•  Belief	 at	 a	 vertex	 depends	 on	 messages	 received	 from	

neighboring	 verBces	

Lecture	 15	 :	 590.02	 Spring	 13	 6	

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

13

𝑣

𝑚 → (𝑥)

𝑢

𝑏 𝑥 ∝ ϕ (𝑥) 𝑚 → (𝑥)
, ∈

 (1)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

13

𝑣

𝑚 → (𝑥)

𝑢

𝑏 𝑥 ∝ ϕ (𝑥) 𝑚 → (𝑥)
, ∈

 (1)

Belief	 PropagaBon	
•  Belief	 at	 a	 vertex	 depends	 on	 messages	 received	 from	

neighboring	 verBces	

Lecture	 15	 :	 590.02	 Spring	 13	 7	

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

15

𝑣

𝑚 → (𝑥)

𝑢

𝑏 𝑥 ∝ 𝜙 (𝑥) 𝑚 → (𝑥)
, ∈

𝑚 → (𝑥) ∝ 𝜙 , (𝑥 , 𝑥) ∙
∈

𝑏 (𝑥)
𝑚 → (𝑥)

(1)

(2)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

13

𝑣

𝑚 → (𝑥)

𝑢

𝑏 𝑥 ∝ ϕ (𝑥) 𝑚 → (𝑥)
, ∈

 (1)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

15

𝑣

𝑚 → (𝑥)

𝑢

𝑏 𝑥 ∝ 𝜙 (𝑥) 𝑚 → (𝑥)
, ∈

𝑚 → (𝑥) ∝ 𝜙 , (𝑥 , 𝑥) ∙
∈

𝑏 (𝑥)
𝑚 → (𝑥)

(1)

(2)

Original	 BP	 Algorithm	

Original BP Implementation

16

E

A C

I

D

B

G H

F

Lecture	 15	 :	 590.02	 Spring	 13	 8	

Original	 BP	 Algorithm	 can	 be	 inefficient	 	

•  Spends	 Bme	 updaBng	 nodes	 which	 have	 already	 converged	

Lecture	 15	 :	 590.02	 Spring	 13	 9	

Challenge	 =	 Boundaries	

Residual	 BP	 ImplementaBon	

19

E

A C

I

D

B

G H

F
Scheduler

Residual BP Implementation

Lecture	 15	 :	 590.02	 Spring	 13	 10	

Residual	 BP	 ImplementaBon	

20

E

A C

I

D

B

G H

F
Scheduler

Residual BP Implementation

Lecture	 15	 :	 590.02	 Spring	 13	 11	

Residual	 BP	 ImplementaBon	

21

E

A C

I

D

B

G H

F
Scheduler

Residual BP Implementation

Lecture	 15	 :	 590.02	 Spring	 13	 12	

Residual	 BP	 ImplementaBon	

22

E

A C

I

D

B

G H

F
Scheduler

B

D

Residual BP Implementation

Lecture	 15	 :	 590.02	 Spring	 13	 13	

Ordering	 based	 on	 residual	 (max	 change	 in	 message	 value)	

Residual	 BP	 ImplementaBon	

23

E

A C

I

D

B

G H

F
Scheduler

D

Residual BP Implementation

Lecture	 15	 :	 590.02	 Spring	 13	 14	

Residual	 BP	 ImplementaBon	

24

E

A C

I

D

B

G H

F
Scheduler

B

D C

E G

F

B

B A

D

B

E

Residual BP Implementation

Lecture	 15	 :	 590.02	 Spring	 13	 15	

Residual	 BP	 converges	 faster	

0 5 10 15 20

0.2

0.4

0.6

SMP
AMP
TRMP
RMP

SMP
AMP
TRMP
RMP

time in seconds

%
 o

f r
un

s
co

nv
er

ge
d

0.1

0.2

0.3

0.4

0 20 40 60 80 100
time in seconds

%
 o

f r
un

s
co

nv
er

ge
d

0 20 40 60 80 100
time in seconds

%
 o

f r
un

s
co

nv
er

ge
d SMP

AMP
TRMP
RMP

SMP
AMP
TRMP
RMP

300 500 700 9000

0.2

0.4

0.6

0.8

1

time in seconds

%
 o

f r
un

s
co

nv
er

ge
d

AGBP
RGBP
AGBP
RGBP

(a) (b) (c)

Figure 2: cumulative percentage of converged runs (y-axis) as a function of time (x-axis) for 50 random grids. (a) comparison of our
RMP to the synchronous (SMP), asynchronous (AMP), and TRP (TRMP) variants of the max-product algorithm for 7 × 7 grids with
C = 7. (b) same as (a) for larger 9 × 9 grids. (c) comparison of GBP and our RGBP method for 20 × 20 grids with C = 7.

putational biology. Yanover andWeiss (2003) show that in-
ferring structure via energy minimization can be posed as
an inference problem in a graphical model. The network
for each protein is an independent inference task with a
unique structure and parameterization, containing between
hundreds and thousands of variables of cardinalities 2–81,
and is highly irregular. We applied the different methods to
all networks (from www.cs.huji.ac.il/c̃heny/proteinsMRF.html).
Our implementation of ABP did not converge on 6 protein
networks even when allowed to run for 30minutes (we note
that this is far fewer than the number of networks reported
not to converge by Yanover and Weiss (2003)). In contrast,
our RBP algorithm converged on all networks. In partic-
ular, it took an average 2 1

2
minutes (with a maximum of

4 minutes) to converge on those networks for which ABP
did not converge. In all these models, both the synchronous
SBP variant and TRP did not converge on many more net-
works than even ABP, again demonstrating the importance
of an informed message schedule.

6 Discussion and Future Work
In this work we addressed the task of message schedul-
ing of propagation methods for approximate inference. We
showed that any reasonable asynchronous algorithm con-
verges under similar conditions to that of synchronous
propagation and proved that the convergence rate of a
round-robin asynchronous algorithm is at least as good
as that of its synchronous counterpart. Motivated by this
analysis, we then presented an extremely simple and effi-
cient message scheduling approach that minimizes an up-
per bound on the distance of the current messages from the
fixed point. We demonstrated that our algorithm is signif-
icantly superior to state-of-the-art methods on a variety of
challenging synthetic and real-life problems.

Interestingly, our choice of message schedule had a sig-
nificant effect not only on the rate of convergence but also
on the convergence success. While this phenomenon is not
typically observed in the field of decoding (see for example
Kfir and Kanter (2003)), it is consistent with the observa-

tions made byWainwright et al. (2002). We conjecture that
when using more oblivious update schemes (including both
synchronous and asynchronous), contradictory signals are
obtained from different parts of the network, causing the
oscillations commonly observed in practice. In contrast,
RBP transmits information in a more “purposeful”way, po-
tentially propagating it to other parts of the network before
they have the opportunity to transmit a contradictory signal
that causes oscillations.

Propagation methods that are guaranteed to converge
have been proposed by Yuille (2001) and Welling and Teh
(2001). These methods are fairly complex to implement;
they also provide limited improvements over BP in terms of
accuracy, and no improvement in convergence rate. While
our methods have no convergence guarantees for general
graphs, they are easy to implement, and appear to converge
on almost all but very hard synthetic problems. Further-
more, our method converges much more quickly than stan-
dard BP or state-of-the-art TRP.

A number of sequential message schedules have been
proposed for message decoding using belief propagation;
these schedules have been shown to converge faster than
synchronous updates. Some works, notably that of Wang
et al. (2005), have formally analyzed convergence rates
for different update schemes for low-density parity-check
codes, under certain idealized assumptions, showing, for
example, that a simple asynchronous propagation approach
is twice as fast as the fully synchronous variant. Both the
algorithms proposed in this literature and the methods used
in the analysis are highly specialized to coding networks,
and it is not clear how they can be applied to general infer-
ence problems outside of the field of decoding.

Our approach defines a whole family of algorithms and
can be applied to practically any message propagation al-
gorithm. We demonstrated that, in addition to improving
BP, our method is effective in improving the performance
of the max-product algorithm as well as that of generalized
belief propagation. Importantly, our approach can in fact be
applied to a wide variety of methods that iteratively apply a

Lecture	 15	 :	 590.02	 Spring	 13	 16	

[Elidan	 et	 al	 UAI	 2006]	

Summary	
•  Asynchronous	 serial	 graph	 algorithms	 can	 converge	 faster	 than	

synchronous	 parallel	 graph	 algorithms	 	

•  Is	 there	 a	 way	 to	 correctly	 transform	 asynchronous	 serial	
algorithms	 to	 run	 in	 a	 parallel	 seYng?	

Lecture	 15	 :	 590.02	 Spring	 13	 17	

GRAPHLAB	

Lecture	 15	 :	 590.02	 Spring	 13	 18	

GraphLab	

19	

Data	 Graph	
Shared	 Data	 Table	

Scheduling	

Update	 FuncBons	 and	 Scopes	

Data	 Graph	

20	

A	 Graph	 with	 data	 associated	 with	 every	 vertex	 and	 edge.	

:Data	

x3:	 current	 belief	

Φ(X6,X9):	 Binary	 potenBal	
	

X1	 X2	 X3	

X5	 X6	 X7	

X8	 X9	 X10	

X4	

X11	

Update	 FuncBons	

21	

Update	 Func=ons	 are	 operaBons	 which	 are	 applied	 on	 a	 vertex	 and	 transform	 the	 data	 in	
the	 scope	 of	 the	 vertex	

BP	 Update:	
	 -‐	 Read	 messages	 on	 adjacent	 	
	 	 	 edges	
	 -‐	 Read	 edge	 potenBals	
	 -‐	 Compute	 a	 new	 belief	 for	 	
	 	 	 the	 current	 vertex	 	
	 -‐	 Write	 new	 messages	 on	 edges	

Update	 FuncBon	 Schedule	

22	

e f g

k j i h

d c b a CPU 1

CPU 2

a

h

a

i

b

d

Update	 FuncBon	 Schedule	

23	

e f g

k j i h

d c b a CPU 1

CPU 2

a

i

b

d

StaBc	 Schedule	
Scheduler	 determines	 the	 	

order	 of	 Update FuncBon	 EvaluaBons	
	

24	

Synchronous	 Schedule:	
	 	 	 Every	 vertex	 updated	 simultaneously	

Round	 Robin	 Schedule:	
	 	 Every	 vertex	 updated	 sequenBally	

Converged	 Slowly	 Converging	
Focus	 Effort	

Need	 for	 Dynamic	 Scheduling	

25	

Dynamic	 Schedule	

26	

e f g

k j i h

d c b a CPU 1

CPU 2

a

h

a

b

b

i

Dynamic	 Schedule	
Update	 FuncBons	 can	 insert	 new	 tasks	 into	 the	 schedule	
	

27	

FIFO	 Queue	 Wildfire	 BP	 [SelvaBci	 et	 al.]	

Priority	 Queue	 Residual	 BP	 [Elidan	 et	 al.]	
	

Splash	 Schedule	 Splash	 BP	 [Gonzalez	 et	 al.]	

Global	 InformaBon	

What	 if	 we	 need	 global	 informaBon?	

28	

Sum	 of	 all	 the	 verBces?	

Algorithm	 Parameters?	

Sufficient	 StaBsBcs?	

Shared	 Data	 Table	 (SDT)	
•  Global	 constant	 parameters	

29	

Constant:
Total # Samples

Constant:
Temperature

Accumulate	 FuncBon:	

Sync	 OperaBon	
•  Sync	 is	 a	 fold/reduce	 operaBon	 over	 the	 graph	

30	

Sync!	

1 3 2

1 2 1 1

3 2 5 1

0

Apply	 FuncBon:	

Add	

Divide	 by	 |V|	

1

6

8

9 22 2

" Accumulate	 performs	 an	 aggregaBon	 over	 verBces	
" Apply	 makes	 a	 final	 modificaBon	 to	 the	 accumulated	 data	
" Example:	 Compute	 the	 average	 of	 all	 the	 verBces	

Shared	 Data	 Table	 (SDT)	
•  Global	 constant	 parameters	
•  Global	 computaBon	 (Sync	 Opera=on)	

31	

Constant:
Total # Samples

Sync: Sample
Statistics

Sync: Loglikelihood Constant:
Temperature

Safety	
and	

Consistency	

32	

Write-‐Write	 Race	

33	

Write-‐Write	 Race	 	
If	 adjacent	 update	 funcBons	 write	 simultaneously	

Lek	 update	 writes:	 Right	 update	 writes:	 Final	 Value	

Race	 CondiBons	 +	 Deadlocks	
•  Just	 one	 of	 the	 many	 possible	 races	
•  Race-‐free	 code	 is	 extremely	 difficult	 to	 write	
	

34	

GraphLab	 design	 ensures	 	
race-‐free	 operaBon	

Scope	 Rules	

35	

Guaranteed	 safety	 for	 all	 update	 funcBons	

Full	 Consistency	

36	

Only	 allow	 update	 funcBons	 two	 verBces	 apart	 to	 be	 run	 in	 parallel	
Reduced	 opportuniBes	 for	 parallelism	

Obtaining	 More	 Parallelism	

37	

Not	 all	 update	 funcBons	 will	 modify	 the	 enBre	 scope!	

Belief	 Propaga=on:	 Only	 uses	 edge	 data	
Gibbs	 Sampling:	 Only	 needs	 to	 read	 adjacent	 verBces	
	

Edge	 Consistency	

38	

Obtaining	 More	 Parallelism	

39	

“Map”	 opera=ons.	 Feature	 extracBon	 on	 vertex	 data	

Vertex	 Consistency	

40	

SequenBal	 Consistency	
GraphLab	 guarantees	 sequen=al	 consistency	

41	

For	 every	 parallel	 execu=on,	 there	 exists	 a	 sequen=al	 execu=on	 of	 update	 funcBons	
which	 will	 produce	 the	 same	 result.	 	

CPU 1

CPU 2

CPU 1

Parallel	

SequenBal	

Bme	

GraphLab	

42	

Data	 Graph	
Shared	 Data	 Table	

Scheduling	

Update	 FuncBons	 and	 Scopes	

DISTRIBUTED	 GRAPHLAB	

Lecture	 15	 :	 590.02	 Spring	 13	 43	

DistribuBng	 GraphLab	
•  NOT	 SHARED-‐NOTHING	 (unlike	 MapReduce	 /	 Pregel)	 	

–  Need	 to	 have	 distributed	 shared	 memory	 	

•  No	 change	 to	 the	 update	 step	

•  Need	 to	 to	 distributed	 scheduling	

•  Need	 to	 ensure	 distributed	 consistency	

•  Need	 to	 ensure	 fault	 tolerance	

Lecture	 15	 :	 590.02	 Spring	 13	 44	

Distributed	 Graph	

45	

ParBBon	 the	 graph	 across	 mulBple	 machines.	

Distributed	 Graph	

46	

•  Ghost	 verBces	 maintain	 adjacency	 structure	 and	 replicate	
remote	 data.	

“ghost”	 verBces	

Distributed	 Graph	

47	

•  Cut	 efficiently	 using	 HPC	 Graph	 parBBoning	 tools	
(ParMeBs	 /	 Scotch	 /	 …)	

“ghost”	 verBces	

Pagerank(scope){	
	 	 //	 Update	 the	 current	 vertex	 data	
	
	
	
	
	
	
	 	 //	 Reschedule	 Neighbors	 if	 needed	
	 	 if	 vertex.PageRank	 changes	 then	 	
	 	 	 	 reschedule_all_neighbors;	 	
}	

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank

Update	 FuncBons	
User-‐defined	 program:	 applied	 to	 a	
vertex	 and	 transforms	 data	 in	 scope	 of	 vertex	

48	

Distributed	 Scheduling	

e

i h

b a

f g

k j

d c

a

h

f

g

j

c b

i

Each	 machine	 maintains	 a	 schedule	 over	 the	 verBces	 it	 owns.	

49	 Distributed Consensus used to identify completion

SoluBon	 1	

Graph	 Coloring	

Distributed	
Consistency	

SoluBon	 2	

Distributed	 Locking	

Edge	 Consistency	 via	 Graph	 Coloring	

VerBces	 of	 the	 same	 color	 are	 all	 at	 least	 one	 vertex	 apart.	
Therefore,	 All	 verBces	 of	 the	 same	 color	 can	 be	 run	 in	 parallel!	

51	

ChromaBc	 Distributed	 Engine	
Ti
m
e	

Execute tasks
on all vertices of

color 0

Execute tasks
on all vertices of

color 0

Ghost Synchronization Completion + Barrier

Execute tasks
on all vertices of

color 1

Execute tasks
on all vertices of

color 1

Ghost Synchronization Completion + Barrier

52	

Problems	
•  Require	 a	 graph	 coloring	 to	 be	 available.	
	
	

•  Frequent	 Barriers	 make	 it	 extremely	 inefficient	 for	 highly	
dynamic	 systems	 where	 only	 a	 small	 number	 of	 verBces	 are	
acBve	 in	 each	 round.	

53	

SoluBon	 1	

Graph	 Coloring	

Distributed	
Consistency	

SoluBon	 2	

Distributed	 Locking	

Distributed	 Locking	
Edge	 Consistency	 can	 be	 guaranteed	 through	 locking.	

:	 RW	 Lock	

55	

Consistency	 Through	 Locking	
Acquire	 write-‐lock	 on	 center	 vertex,	 read-‐lock	 on	 adjacent.	

56	

" Solution
" Pipelining

CPU Machine 1

Machine 2

A C

B D

Consistency	 Through	 Locking	
Multicore Setting

•  PThread	 RW-‐Locks	

Distributed Setting

•  Distributed	 Locks	

" Challenges
" Latency

A C

B D

A C

B D

A

57

No	 Pipelining	

lock scope 1

Process request 1

scope	 1	 acquired
update_funcBon	 1
release	 scope	 1

Process release 1

Ti
m
e	

58	

Pipelining	 /	 Latency	 Hiding	
Hide	 latency	 using	 pipelining	

lock scope 1

Process request 1

scope	 1	 acquired

update_funcBon	 1
release	 scope	 1

Process release 1

lock scope 2

Ti
m
e	 lock scope 3 Process request 2

Process request 3
scope	 2	 acquired
scope	 3	 acquired

update_funcBon	 2
release	 scope	 2 59	

Checkpoints	 for	 Fault	 Tolerance	

1:	 Stop	 the	 world	
2:	 Write	 state	 to	 disk	

Snapshot	 Performance	

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

sync. snapshot

no snapshot

async. snapshot

61	

No Snapshot

Snapshot	

One	 slow	
machine	

Because	 we	 have	 to	 stop	 the	 world,	 	
One	 slow	 machine	 slows	 everything	 down!	

Snapshot	 =me	

Slow	 machine	

Bexer	 CheckpoinBng	
•  Based	 on	 [Chandy,	 Lamport	 ‘85]	
•  Edge	 consistent	 update	 funcBon	

Lecture	 15	 :	 590.02	 Spring	 13	 62	

4 Machines 8 Machines 16 Machines0

50

100

150

200

250

300

Number of Machines

R
un

tim
e

(s
)

(a) Runtime

100 1000 100000

50

100

150

200

250

Maximum Pipeline Length

R
un

tim
e

(s
)

(b) Pipeline Length

Figure 3: (a) Plots the runtime of the Distributed Locking En-
gine on a synthetic loopy belief propagation problem varying
the number of machines with pipeline length = 10, 000. (b)
Plots the runtime of the Distributed Locking Engine on the
same synthetic problem on 16 machines (128 CPUs), varying
the pipeline length. Increasing pipeline length improves perfor-
mance with diminishing returns.

Algorithm 5: Snapshot Update on vertex v

if v was already snapshotted then
Quit

Save Dv // Save current vertex

foreach u 2 N[v] do // Loop over neighbors

if u was not snapshotted then
Save data on edge Du$v

Schedule u for a Snapshot Update

Mark v as snapshotted

4.3 Fault Tolerance
We introduce fault tolerance to the distributed GraphLab frame-

work using a distributed checkpoint mechanism. In the event of a
failure, the system is recovered from the last checkpoint. We evalu-
ate two strategies to construct distributed snapshots: a synchronous
method that suspends all computation while the snapshot is con-
structed, and an asynchronous method that incrementally constructs
a snapshot without suspending execution.

Synchronous snapshots are constructed by suspending execution
of update functions, flushing all communication channels, and then
saving all modified data since the last snapshot. Changes are written
to journal files in a distributed file-system and can be used to restart
the execution at any previous snapshot.

Unfortunately, synchronous snapshots expose the GraphLab en-
gine to the same inefficiencies of synchronous computation (Sec. 2)
that GraphLab is trying to address. Therefore we designed a fully
asynchronous alternative based on the Chandy-Lamport [6] snap-
shot. Using the GraphLab abstraction we designed and implemented
a variant of the Chandy-Lamport snapshot specifically tailored to
the GraphLab data-graph and execution model. The resulting algo-
rithm (Alg. 5) is expressed as an update function and guarantees a
consistent snapshot under the following conditions:

• Edge Consistency is used on all update functions,
• Schedule completes before the scope is unlocked,
• the Snapshot Update is prioritized over other update functions,

which are satisfied with minimal changes to the GraphLab engine.
The proof of correctness follows naturally from the original proof in
[6] with the machines and channels replaced by vertices and edges
and messages corresponding to scope modifications.

Both the synchronous and asynchronous snapshots are initiated
at fixed intervals. The choice of interval must balance the cost of
constructing the checkpoint with the computation lost since the last

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

baseline

async. snapshot

sync. snapshot

(a) Snapshot

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

baseline

async. snapshot

sync. snapshot

(b) Snapshot with Delay

Figure 4: (a) The number of vertices updated vs. time elapsed
for 10 iterations comparing asynchronous and synchronous
snapshots. Synchronous snapshots (completed in 109 seconds)
have the characteristic “flatline” while asynchronous snapshots
(completed in 104 seconds) allow computation to proceed. (b)
Same setup as in (a) but with a single machine fault lasting 15
seconds. As a result of the 15 second delay the asynchronous
snapshot incurs only a 3 second penalty while the synchronous
snapshot incurs a 16 second penalty.

checkpoint in the event of a failure. Young et al. [37] derived a
first-order approximation to the optimal checkpoint interval:

TInterval =
p

2TcheckpointTMTBF (3)

where Tcheckpoint is the time it takes to complete the checkpoint and
TMTBF is the mean time between failures for the cluster. For instance,
using a cluster of 64 machines, a per machine MTBF of 1 year, and
a checkpoint time of 2 min leads to optimal checkpoint intervals of
3 hrs. Therefore, for the deployments considered in our experiments,
even taking pessimistic assumptions for TMTBF, leads to checkpoint
intervals that far exceed the runtime of our experiments and in fact
also exceed the Hadoop experiment runtimes. This brings into
question the emphasis on strong fault tolerance in Hadoop. Better
performance can be obtained by balancing fault tolerance costs
against that of a job restart.

Evaluation: We evaluate the performance of the snapshotting
algorithms on the same synthetic mesh problem described in the
previous section, running on 16 machines (128 processors). We
configure the implementation to issue exactly one snapshot in the
middle of the second iteration. In Fig. 4(a) we plot the number of up-
dates completed against time elapsed. The effect of the synchronous
snapshot and the asynchronous snapshot can be clearly observed:
synchronous snapshots stops execution, while the asynchronous
snapshot only slows down execution.

The benefits of asynchronous snapshots become more apparent in
the multi-tenancy setting where variation in system performance
exacerbate the cost of synchronous operations. We simulate this on
Amazon EC2 by halting one of the processes for 15 seconds after
snapshot begins. In figures Fig. 4(b) we again plot the number of
updates completed against time elapsed and we observe that the
asynchronous snapshot is minimally affected by the simulated fail-
ure (adding only 3 seconds to the runtime), while the synchronous
snapshot experiences a full 15 second increase in runtime.

4.4 System Design
In Fig. 5(a), we provide a high-level overview of a GraphLab

system. The user begins by constructing the atom graph representa-
tion on a Distributed File System (DFS). If hashed partitioning is
used, the construction process is Map-Reduceable where a map is
performed over each vertex and edge, and each reducer accumulates
an atom file. The atom journal format allows future changes to the
graph to be appended without reprocessing all the data.

Async.	 Snapshot	 Performance	

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

sync. snapshot

no snapshot

async. snapshot

63	

No Snapshot

Snapshot	

One	 slow	
machine	

No	 penalty	 incurred	 by	 the	 slow	 machine!	

Summary	
•  Asynchronous	 serial	 graph	 algorithms	 can	 converge	 faster	 than	

synchronous	 parallel	 graph	 algorithms	 	

•  GraphLab	 provides	 high	 level	 abstracBons	 for	 wriBng	
asynchronous	 graph	 algorithms	
–  Takes	 care	 of	 consistency	 and	 scheduling	

•  Distributed	 GraphLab	 	
–  Graph	 processing	 using	 color-‐steps	
–  Consistency	 ensured	 via	 pipelined	 distributed	 locking	
–  Fault	 tolerance	 via	 fine	 grained	 checkpoinBng	

Lecture	 15	 :	 590.02	 Spring	 13	 64	

