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Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the
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is scheduled for processing, instead of only using messages sent
during the previous tick as in the BSP model. This can further in-
crease the convergence rate since data updates can be incorporated
as soon as they become available. For example, in belief propa-
gation, directly using the most recent updates can significantly im-
prove performance over synchronous update methods that have to
wait until the end of each tick [12].

Although asynchronous execution policies can improve the con-
vergence rate for graph processing applications, asynchronous par-
allel programs are much more difficult to write, debug, and test than
synchronous programs. If an asynchronous implementation does
not output the expected result, it is difficult to locate the source of
the problem: it could be the algorithm itself, a bug in the asyn-
chronous implementation, or simply that the application does not
converge to the same fixpoint under synchronous and asynchronous
executions. Although several asynchronous graph processing plat-
forms have been proposed which attempt to mitigate this problem
by providing some asynchronous programming abstractions, their
abstractions still require users to consider low-level concurrency is-
sues [17, 21]. For example in GraphLab, the unit of calculation is a
single update task over a vertex [21]. When an update task is sched-
uled, it computes based on whatever data is available on the vertex
itself and possibly its neighbors. But since adjacent vertices can be
scheduled simultaneously, users need to worry about read and write
conflicts and choose from different consistency levels to avoid such
conflicts themselves. In Galois, different processes can iterate over
the vertices simultaneously, updating their data in an optimistic par-
allel manner [17]. Users then need to specify which method calls
can safely be interleaved without leading to data races and how
the effects of each method call can be undone when conflicts are
detected. Such conflicts arise because general asynchronous exe-
cution models allow parallel threads to communicate at any time,
not just at the tick boundaries. The resulting concurrent execution
is highly dependent on process scheduling and is not deterministic.
Thus, asynchronous parallel frameworks have to make concurrency
issues explicit to the users.

For these reasons, a synchronous iterative model is clearly the
programming model of choice due to its simplicity. Users can fo-
cus initially on “getting the application right,” and they can eas-
ily debug their code and reason about program correctness without
having to worry about low-level concurrency issues. Then, hav-
ing gained confidence that their encoded graph application logic is
bug-free, users would like to be able to migrate to asynchronous ex-
ecution for better performance without reimplementing their appli-
cations; they should just be able to change the underlying execution
policy in order to switch between synchronous and asynchronous
execution.

Unfortunately, this crucially important development cycle — go-
ing from a simple synchronous specification of a graph process-
ing application to a high-performance asynchronous execution —
is not supported by existing frameworks. Indeed, it is hard to imag-
ine switching from the message-passing communication style of a
synchronous graph program to the shared-variable communication
used in an asynchronous one without reimplementing the applica-
tion. However, in this paper we show such reimplementation is
unnecessary: most of the benefit of asynchronous processing can
be achieved in a message-passing setting by allowing users to ex-
plicitly relax certain constraints imposed on message delivery by
the BSP model.
Contributions of this Paper. In this paper, we combine synchronous
programming with asynchronous execution for large-scale graph
processing by cleanly separating application logic from execution
policies. We have designed and implemented a large scale par-

allel iterative graph processing framework named GRACE, which
exposes a synchronous iterative graph programming model to the
users while enabling both synchronous and user-specified asyn-
chronous execution policies. Our work makes the following three
contributions:

(1) We present GRACE, a general parallel graph processing frame-
work that provides an iterative synchronous programming model
for developers. The programming model captures data dependen-
cies using messages passed between neighboring vertices like the
BSP model (Section 3).

(2) We describe the parallel runtime of GRACE, which follows
the BSP model for executing the coded application. At the same
time GRACE allows users to flexibly specify their own (asynchro-
nous) execution policies by explicitly relaxing data dependencies
associated with messages in order to achieve fast convergence. By
doing so GRACE maintains both fast convergence through cus-
tomized (asynchronous) execution policies of the application and
automatic scalability through the BSP model at run time (Section 4).

(3) We experiment with four large-scale real-world graph pro-
cessing applications written in a shared-memory prototype imple-
mentation of GRACE (Section 5). Our experiments show that even
though programs in GRACE are written synchronously, we can
achieve convergence rates and performance similar to that of com-
pletely general asynchronous execution engines, while still main-
taining nearly linear parallel speedup by following the BSP model
to minimize concurrency control overheads (Section 6).

We discuss related work in Section 7 and conclude in Section 8.
We begin our presentation by introducing iterative graph processing
applications in Section 2.

2. ITERATIVE GRAPH PROCESSING
Iterative graph processing applications are computations over

graphs that update data in the graph in iterations or ticks. During
each tick the data in the graph is updated, and the computation
terminates after a fixed number of ticks have been executed [9] or
the computation has converged [13]. We use the belief propagation
algorithm on pairwise Markov random fields (MRFs) as a running
example to illustrate the computation patterns of an iterative graph
processing application [26].
Running Example: Belief Propagation on Pairwise MRF. The
pairwise MRF is a widely used undirected graphical model which
can compactly represent complex probability distributions. Con-
sider n discrete random variables X = {X

1

, X
2

, · · · , X
n

} taking
on values X

i

2 ⌦, where ⌦ is the sample space.1 A pairwise MRF
is an undirected graph G(V,E) where vertices represent random
variables and edges represent dependencies. Each vertex u is as-
sociated with the potential function �

u

: ⌦ 7! R+ and each edge
e
u,v

is associated with the potential function �
u,v

: ⌦⇥⌦ 7! R+.
The joint distribution is proportional to the product of the potential
functions:
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Computing the marginal distribution for a random variable (i.e.,
a vertex) is the core procedure for many learning and inference
tasks in MRF. Belief propagation (BP), which works by repeat-
edly passing messages over the graph to calculate marginal distri-
butions until the computation converges, is one of the most popular
algorithms used for this task [12]. The message m

u!v

(x
v

) sent

1In general, each random variable can have its own sample space.
For simplicity of discussion, we assume that all the random vari-
ables have the same sample space.
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Figure 2: cumulative percentage of converged runs (y-axis) as a function of time (x-axis) for 50 random grids. (a) comparison of our
RMP to the synchronous (SMP), asynchronous (AMP), and TRP (TRMP) variants of the max-product algorithm for 7 × 7 grids with
C = 7. (b) same as (a) for larger 9 × 9 grids. (c) comparison of GBP and our RGBP method for 20 × 20 grids with C = 7.

putational biology. Yanover andWeiss (2003) show that in-
ferring structure via energy minimization can be posed as
an inference problem in a graphical model. The network
for each protein is an independent inference task with a
unique structure and parameterization, containing between
hundreds and thousands of variables of cardinalities 2–81,
and is highly irregular. We applied the different methods to
all networks (from www.cs.huji.ac.il/c̃heny/proteinsMRF.html).
Our implementation of ABP did not converge on 6 protein
networks even when allowed to run for 30minutes (we note
that this is far fewer than the number of networks reported
not to converge by Yanover and Weiss (2003)). In contrast,
our RBP algorithm converged on all networks. In partic-
ular, it took an average 2 1

2
minutes (with a maximum of

4 minutes) to converge on those networks for which ABP
did not converge. In all these models, both the synchronous
SBP variant and TRP did not converge on many more net-
works than even ABP, again demonstrating the importance
of an informed message schedule.

6 Discussion and Future Work
In this work we addressed the task of message schedul-
ing of propagation methods for approximate inference. We
showed that any reasonable asynchronous algorithm con-
verges under similar conditions to that of synchronous
propagation and proved that the convergence rate of a
round-robin asynchronous algorithm is at least as good
as that of its synchronous counterpart. Motivated by this
analysis, we then presented an extremely simple and effi-
cient message scheduling approach that minimizes an up-
per bound on the distance of the current messages from the
fixed point. We demonstrated that our algorithm is signif-
icantly superior to state-of-the-art methods on a variety of
challenging synthetic and real-life problems.

Interestingly, our choice of message schedule had a sig-
nificant effect not only on the rate of convergence but also
on the convergence success. While this phenomenon is not
typically observed in the field of decoding (see for example
Kfir and Kanter (2003)), it is consistent with the observa-

tions made byWainwright et al. (2002). We conjecture that
when using more oblivious update schemes (including both
synchronous and asynchronous), contradictory signals are
obtained from different parts of the network, causing the
oscillations commonly observed in practice. In contrast,
RBP transmits information in a more “purposeful”way, po-
tentially propagating it to other parts of the network before
they have the opportunity to transmit a contradictory signal
that causes oscillations.

Propagation methods that are guaranteed to converge
have been proposed by Yuille (2001) and Welling and Teh
(2001). These methods are fairly complex to implement;
they also provide limited improvements over BP in terms of
accuracy, and no improvement in convergence rate. While
our methods have no convergence guarantees for general
graphs, they are easy to implement, and appear to converge
on almost all but very hard synthetic problems. Further-
more, our method converges much more quickly than stan-
dard BP or state-of-the-art TRP.

A number of sequential message schedules have been
proposed for message decoding using belief propagation;
these schedules have been shown to converge faster than
synchronous updates. Some works, notably that of Wang
et al. (2005), have formally analyzed convergence rates
for different update schemes for low-density parity-check
codes, under certain idealized assumptions, showing, for
example, that a simple asynchronous propagation approach
is twice as fast as the fully synchronous variant. Both the
algorithms proposed in this literature and the methods used
in the analysis are highly specialized to coding networks,
and it is not clear how they can be applied to general infer-
ence problems outside of the field of decoding.

Our approach defines a whole family of algorithms and
can be applied to practically any message propagation al-
gorithm. We demonstrated that, in addition to improving
BP, our method is effective in improving the performance
of the max-product algorithm as well as that of generalized
belief propagation. Importantly, our approach can in fact be
applied to a wide variety of methods that iteratively apply a
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  al.]	
  



Global	
  InformaBon	
  

What	
  if	
  we	
  need	
  global	
  informaBon?	
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Sum	
  of	
  all	
  the	
  verBces?	
  

Algorithm	
  Parameters?	
  

Sufficient	
  StaBsBcs?	
  



Shared	
  Data	
  Table	
  (SDT)	
  
•  Global	
  constant	
  parameters	
  

29	
  

Constant: 
Total # Samples 

Constant:  
Temperature 



Accumulate	
  FuncBon:	
  

Sync	
  OperaBon	
  
•  Sync	
  is	
  a	
  fold/reduce	
  operaBon	
  over	
  the	
  graph	
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Sync!	
  

1 3 2 

1 2 1 1 

3 2 5 1 

0 

Apply	
  FuncBon:	
  

Add	
  

Divide	
  by	
  |V|	
  

1 

6 

8 

9 22 2 

" Accumulate	
  performs	
  an	
  aggregaBon	
  over	
  verBces	
  
" Apply	
  makes	
  a	
  final	
  modificaBon	
  to	
  the	
  accumulated	
  data	
  
" Example:	
  Compute	
  the	
  average	
  of	
  all	
  the	
  verBces	
  



Shared	
  Data	
  Table	
  (SDT)	
  
•  Global	
  constant	
  parameters	
  
•  Global	
  computaBon	
  (Sync	
  Opera=on)	
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Constant: 
Total # Samples 

Sync: Sample 
Statistics 

Sync: Loglikelihood Constant:  
Temperature 



Safety	
  
and	
  

Consistency	
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Write-­‐Write	
  Race	
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Write-­‐Write	
  Race	
  	
  
If	
  adjacent	
  update	
  funcBons	
  write	
  simultaneously	
  

Lek	
  update	
  writes:	
   Right	
  update	
  writes:	
  Final	
  Value	
  



Race	
  CondiBons	
  +	
  Deadlocks	
  
•  Just	
  one	
  of	
  the	
  many	
  possible	
  races	
  
•  Race-­‐free	
  code	
  is	
  extremely	
  difficult	
  to	
  write	
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GraphLab	
  design	
  ensures	
  	
  
race-­‐free	
  operaBon	
  



Scope	
  Rules	
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Guaranteed	
  safety	
  for	
  all	
  update	
  funcBons	
  



Full	
  Consistency	
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Only	
  allow	
  update	
  funcBons	
  two	
  verBces	
  apart	
  to	
  be	
  run	
  in	
  parallel	
  
Reduced	
  opportuniBes	
  for	
  parallelism	
  



Obtaining	
  More	
  Parallelism	
  

37	
  

Not	
  all	
  update	
  funcBons	
  will	
  modify	
  the	
  enBre	
  scope!	
  

Belief	
  Propaga=on:	
  Only	
  uses	
  edge	
  data	
  
Gibbs	
  Sampling:	
  Only	
  needs	
  to	
  read	
  adjacent	
  verBces	
  
	
  



Edge	
  Consistency	
  

38	
  



Obtaining	
  More	
  Parallelism	
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“Map”	
  opera=ons.	
  Feature	
  extracBon	
  on	
  vertex	
  data	
  



Vertex	
  Consistency	
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SequenBal	
  Consistency	
  
GraphLab	
  guarantees	
  sequen=al	
  consistency	
  

41	
  

For	
  every	
  parallel	
  execu=on,	
  there	
  exists	
  a	
  sequen=al	
  execu=on	
  of	
  update	
  funcBons	
  
which	
  will	
  produce	
  the	
  same	
  result.	
  	
  

CPU 1 

CPU 2 

CPU 1 

Parallel	
  

SequenBal	
  

Bme	
  



GraphLab	
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Data	
  Graph	
  
Shared	
  Data	
  Table	
  

Scheduling	
  

Update	
  FuncBons	
  and	
  Scopes	
  



DISTRIBUTED	
  GRAPHLAB	
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DistribuBng	
  GraphLab	
  
•  NOT	
  SHARED-­‐NOTHING	
  (unlike	
  MapReduce	
  /	
  Pregel)	
  	
  

–  Need	
  to	
  have	
  distributed	
  shared	
  memory	
  	
  

•  No	
  change	
  to	
  the	
  update	
  step	
  

•  Need	
  to	
  to	
  distributed	
  scheduling	
  

•  Need	
  to	
  ensure	
  distributed	
  consistency	
  

•  Need	
  to	
  ensure	
  fault	
  tolerance	
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Distributed	
  Graph	
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ParBBon	
  the	
  graph	
  across	
  mulBple	
  machines.	
  



Distributed	
  Graph	
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•  Ghost	
  verBces	
  maintain	
  adjacency	
  structure	
  and	
  replicate	
  
remote	
  data.	
  

“ghost”	
  verBces	
  



Distributed	
  Graph	
  

47	
  

•  Cut	
  efficiently	
  using	
  HPC	
  Graph	
  parBBoning	
  tools	
  
(ParMeBs	
  /	
  Scotch	
  /	
  …)	
  

“ghost”	
  verBces	
  



Pagerank(scope){	
  
	
  	
  //	
  Update	
  the	
  current	
  vertex	
  data	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  //	
  Reschedule	
  Neighbors	
  if	
  needed	
  
	
  	
  if	
  vertex.PageRank	
  changes	
  then	
  	
  
	
  	
  	
  	
  reschedule_all_neighbors;	
  	
  
}	
  

vertex.PageRank = α
ForEach inPage: 

vertex.PageRank += (1−α)× inPage.PageRank

Update	
  FuncBons	
  
User-­‐defined	
  program:	
  applied	
  to	
  a	
  
vertex	
  and	
  transforms	
  data	
  in	
  scope	
  of	
  vertex	
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Distributed	
  Scheduling	
  

e 

i h 

b a 

f g 

k j 

d c 

a 

h 

f 

g 

j 

c b 

i 

Each	
  machine	
  maintains	
  a	
  schedule	
  over	
  the	
  verBces	
  it	
  owns.	
  

49	
  Distributed Consensus used to identify completion 



SoluBon	
  1	
  

Graph	
  Coloring	
  

Distributed	
  
Consistency	
  

SoluBon	
  2	
  

Distributed	
  Locking	
  



Edge	
  Consistency	
  via	
  Graph	
  Coloring	
  

VerBces	
  of	
  the	
  same	
  color	
  are	
  all	
  at	
  least	
  one	
  vertex	
  apart.	
  
Therefore,	
  All	
  verBces	
  of	
  the	
  same	
  color	
  can	
  be	
  run	
  in	
  parallel!	
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ChromaBc	
  Distributed	
  Engine	
  
Ti
m
e	
  

Execute tasks  
on all vertices of  

color 0 

Execute tasks  
on all vertices of  

color 0 

Ghost Synchronization Completion + Barrier 

Execute tasks  
on all vertices of  

color 1 

Execute tasks  
on all vertices of  

color 1 

Ghost Synchronization Completion + Barrier 
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Problems	
  
•  Require	
  a	
  graph	
  coloring	
  to	
  be	
  available.	
  
	
  
	
  

•  Frequent	
  Barriers	
  make	
  it	
  extremely	
  inefficient	
  for	
  highly	
  
dynamic	
  systems	
  where	
  only	
  a	
  small	
  number	
  of	
  verBces	
  are	
  
acBve	
  in	
  each	
  round.	
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SoluBon	
  1	
  

Graph	
  Coloring	
  

Distributed	
  
Consistency	
  

SoluBon	
  2	
  

Distributed	
  Locking	
  



Distributed	
  Locking	
  
Edge	
  Consistency	
  can	
  be	
  guaranteed	
  through	
  locking.	
  

:	
  RW	
  Lock	
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Consistency	
  Through	
  Locking	
  
Acquire	
  write-­‐lock	
  on	
  center	
  vertex,	
  read-­‐lock	
  on	
  adjacent.	
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" Solution 
" Pipelining 

CPU Machine 1 

Machine 2 

A C 

B D 

Consistency	
  Through	
  Locking	
  
Multicore Setting 

•  PThread	
  RW-­‐Locks	
  

Distributed Setting 

•  Distributed	
  Locks	
  

" Challenges 
" Latency 

A C 

B D 

A C 

B D 

A 
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No	
  Pipelining	
  

lock scope 1 

Process request 1 

scope	
  1	
  acquired 
update_funcBon	
  1 
release	
  scope	
  1 

Process release 1 

Ti
m
e	
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Pipelining	
  /	
  Latency	
  Hiding	
  
Hide	
  latency	
  using	
  pipelining	
  

lock scope 1 

Process request 1 

scope	
  1	
  acquired 

update_funcBon	
  1 
release	
  scope	
  1 

Process release 1 

lock scope 2 

Ti
m
e	
   lock scope 3 Process request 2 

Process request 3 
scope	
  2	
  acquired 
scope	
  3	
  acquired 

update_funcBon	
  2 
release	
  scope	
  2 59	
  



Checkpoints	
  for	
  Fault	
  Tolerance	
  

1:	
  Stop	
  the	
  world	
  
2:	
  Write	
  state	
  to	
  disk	
  



Snapshot	
  Performance	
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sync. snapshot
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No Snapshot 

Snapshot	
  

One	
  slow	
  
machine	
  

Because	
  we	
  have	
  to	
  stop	
  the	
  world,	
  	
  
One	
  slow	
  machine	
  slows	
  everything	
  down!	
  

Snapshot	
  =me	
  

Slow	
  machine	
  



Bexer	
  CheckpoinBng	
  
•  Based	
  on	
  [Chandy,	
  Lamport	
  ‘85]	
  
•  Edge	
  consistent	
  update	
  funcBon	
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Figure 3: (a) Plots the runtime of the Distributed Locking En-
gine on a synthetic loopy belief propagation problem varying
the number of machines with pipeline length = 10, 000. (b)
Plots the runtime of the Distributed Locking Engine on the
same synthetic problem on 16 machines (128 CPUs), varying
the pipeline length. Increasing pipeline length improves perfor-
mance with diminishing returns.

Algorithm 5: Snapshot Update on vertex v

if v was already snapshotted then
Quit

Save Dv // Save current vertex

foreach u 2 N[v] do // Loop over neighbors

if u was not snapshotted then
Save data on edge Du$v

Schedule u for a Snapshot Update

Mark v as snapshotted

4.3 Fault Tolerance
We introduce fault tolerance to the distributed GraphLab frame-

work using a distributed checkpoint mechanism. In the event of a
failure, the system is recovered from the last checkpoint. We evalu-
ate two strategies to construct distributed snapshots: a synchronous
method that suspends all computation while the snapshot is con-
structed, and an asynchronous method that incrementally constructs
a snapshot without suspending execution.

Synchronous snapshots are constructed by suspending execution
of update functions, flushing all communication channels, and then
saving all modified data since the last snapshot. Changes are written
to journal files in a distributed file-system and can be used to restart
the execution at any previous snapshot.

Unfortunately, synchronous snapshots expose the GraphLab en-
gine to the same inefficiencies of synchronous computation (Sec. 2)
that GraphLab is trying to address. Therefore we designed a fully
asynchronous alternative based on the Chandy-Lamport [6] snap-
shot. Using the GraphLab abstraction we designed and implemented
a variant of the Chandy-Lamport snapshot specifically tailored to
the GraphLab data-graph and execution model. The resulting algo-
rithm (Alg. 5) is expressed as an update function and guarantees a
consistent snapshot under the following conditions:

• Edge Consistency is used on all update functions,
• Schedule completes before the scope is unlocked,
• the Snapshot Update is prioritized over other update functions,

which are satisfied with minimal changes to the GraphLab engine.
The proof of correctness follows naturally from the original proof in
[6] with the machines and channels replaced by vertices and edges
and messages corresponding to scope modifications.

Both the synchronous and asynchronous snapshots are initiated
at fixed intervals. The choice of interval must balance the cost of
constructing the checkpoint with the computation lost since the last
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(a) Snapshot
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(b) Snapshot with Delay

Figure 4: (a) The number of vertices updated vs. time elapsed
for 10 iterations comparing asynchronous and synchronous
snapshots. Synchronous snapshots (completed in 109 seconds)
have the characteristic “flatline” while asynchronous snapshots
(completed in 104 seconds) allow computation to proceed. (b)
Same setup as in (a) but with a single machine fault lasting 15
seconds. As a result of the 15 second delay the asynchronous
snapshot incurs only a 3 second penalty while the synchronous
snapshot incurs a 16 second penalty.

checkpoint in the event of a failure. Young et al. [37] derived a
first-order approximation to the optimal checkpoint interval:

TInterval =
p

2TcheckpointTMTBF (3)

where Tcheckpoint is the time it takes to complete the checkpoint and
TMTBF is the mean time between failures for the cluster. For instance,
using a cluster of 64 machines, a per machine MTBF of 1 year, and
a checkpoint time of 2 min leads to optimal checkpoint intervals of
3 hrs. Therefore, for the deployments considered in our experiments,
even taking pessimistic assumptions for TMTBF, leads to checkpoint
intervals that far exceed the runtime of our experiments and in fact
also exceed the Hadoop experiment runtimes. This brings into
question the emphasis on strong fault tolerance in Hadoop. Better
performance can be obtained by balancing fault tolerance costs
against that of a job restart.

Evaluation: We evaluate the performance of the snapshotting
algorithms on the same synthetic mesh problem described in the
previous section, running on 16 machines (128 processors). We
configure the implementation to issue exactly one snapshot in the
middle of the second iteration. In Fig. 4(a) we plot the number of up-
dates completed against time elapsed. The effect of the synchronous
snapshot and the asynchronous snapshot can be clearly observed:
synchronous snapshots stops execution, while the asynchronous
snapshot only slows down execution.

The benefits of asynchronous snapshots become more apparent in
the multi-tenancy setting where variation in system performance
exacerbate the cost of synchronous operations. We simulate this on
Amazon EC2 by halting one of the processes for 15 seconds after
snapshot begins. In figures Fig. 4(b) we again plot the number of
updates completed against time elapsed and we observe that the
asynchronous snapshot is minimally affected by the simulated fail-
ure (adding only 3 seconds to the runtime), while the synchronous
snapshot experiences a full 15 second increase in runtime.

4.4 System Design
In Fig. 5(a), we provide a high-level overview of a GraphLab

system. The user begins by constructing the atom graph representa-
tion on a Distributed File System (DFS). If hashed partitioning is
used, the construction process is Map-Reduceable where a map is
performed over each vertex and edge, and each reducer accumulates
an atom file. The atom journal format allows future changes to the
graph to be appended without reprocessing all the data.



Async.	
  Snapshot	
  Performance	
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No Snapshot 

Snapshot	
  

One	
  slow	
  
machine	
  

No	
  penalty	
  incurred	
  by	
  the	
  slow	
  machine!	
  



Summary	
  
•  Asynchronous	
  serial	
  graph	
  algorithms	
  can	
  converge	
  faster	
  than	
  

synchronous	
  parallel	
  graph	
  algorithms	
  	
  

•  GraphLab	
  provides	
  high	
  level	
  abstracBons	
  for	
  wriBng	
  
asynchronous	
  graph	
  algorithms	
  
–  Takes	
  care	
  of	
  consistency	
  and	
  scheduling	
  

•  Distributed	
  GraphLab	
  	
  
–  Graph	
  processing	
  using	
  color-­‐steps	
  
–  Consistency	
  ensured	
  via	
  pipelined	
  distributed	
  locking	
  
–  Fault	
  tolerance	
  via	
  fine	
  grained	
  checkpoinBng	
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