
Asynchronous	
 Graph	
 Processing	

CompSci	
 590.03	

Instructor:	
 Ashwin	
 Machanavajjhala	

	

(slides	
 adapted	
 from	
 Graphlab	
 talks	
 at	
 UAI’10	
 &	
 VLDB	
 ’12	
 	
 	

and	
 Gouzhang	
 Wang’s	
 talk	
 at	
 CIDR	
 2013)	

1	
 Lecture	
 15	
 :	
 590.02	
 Spring	
 13	

Recap:	
 Pregel	

3 6 2 1

Superstep 0

6 6 2 6

Superstep 1

6 6 6 6

Superstep 2

6 6 6 6

Superstep 3

Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 2	

Graph	
 Processing	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 3	

Dependency	

Graph	

IteraBve	

ComputaBon	

My Interests

Friends
Interests

Local	

Updates	

This	
 Class	

•  Asynchronous	
 Graph	
 Processing	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 4	

Example:	
 Belief	
 PropagaBon	

•  Want	
 to	
 compute	
 marginal	
 distribuBon	
 at	
 each	
 node.	
 	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 5	

Running Example: Belief Propagation

• Core procedure for many inference tasks in
graphical models
– Example: MRF for Image Restoration

12

is scheduled for processing, instead of only using messages sent
during the previous tick as in the BSP model. This can further in-
crease the convergence rate since data updates can be incorporated
as soon as they become available. For example, in belief propa-
gation, directly using the most recent updates can significantly im-
prove performance over synchronous update methods that have to
wait until the end of each tick [12].

Although asynchronous execution policies can improve the con-
vergence rate for graph processing applications, asynchronous par-
allel programs are much more difficult to write, debug, and test than
synchronous programs. If an asynchronous implementation does
not output the expected result, it is difficult to locate the source of
the problem: it could be the algorithm itself, a bug in the asyn-
chronous implementation, or simply that the application does not
converge to the same fixpoint under synchronous and asynchronous
executions. Although several asynchronous graph processing plat-
forms have been proposed which attempt to mitigate this problem
by providing some asynchronous programming abstractions, their
abstractions still require users to consider low-level concurrency is-
sues [17, 21]. For example in GraphLab, the unit of calculation is a
single update task over a vertex [21]. When an update task is sched-
uled, it computes based on whatever data is available on the vertex
itself and possibly its neighbors. But since adjacent vertices can be
scheduled simultaneously, users need to worry about read and write
conflicts and choose from different consistency levels to avoid such
conflicts themselves. In Galois, different processes can iterate over
the vertices simultaneously, updating their data in an optimistic par-
allel manner [17]. Users then need to specify which method calls
can safely be interleaved without leading to data races and how
the effects of each method call can be undone when conflicts are
detected. Such conflicts arise because general asynchronous exe-
cution models allow parallel threads to communicate at any time,
not just at the tick boundaries. The resulting concurrent execution
is highly dependent on process scheduling and is not deterministic.
Thus, asynchronous parallel frameworks have to make concurrency
issues explicit to the users.

For these reasons, a synchronous iterative model is clearly the
programming model of choice due to its simplicity. Users can fo-
cus initially on “getting the application right,” and they can eas-
ily debug their code and reason about program correctness without
having to worry about low-level concurrency issues. Then, hav-
ing gained confidence that their encoded graph application logic is
bug-free, users would like to be able to migrate to asynchronous ex-
ecution for better performance without reimplementing their appli-
cations; they should just be able to change the underlying execution
policy in order to switch between synchronous and asynchronous
execution.

Unfortunately, this crucially important development cycle — go-
ing from a simple synchronous specification of a graph process-
ing application to a high-performance asynchronous execution —
is not supported by existing frameworks. Indeed, it is hard to imag-
ine switching from the message-passing communication style of a
synchronous graph program to the shared-variable communication
used in an asynchronous one without reimplementing the applica-
tion. However, in this paper we show such reimplementation is
unnecessary: most of the benefit of asynchronous processing can
be achieved in a message-passing setting by allowing users to ex-
plicitly relax certain constraints imposed on message delivery by
the BSP model.
Contributions of this Paper. In this paper, we combine synchronous
programming with asynchronous execution for large-scale graph
processing by cleanly separating application logic from execution
policies. We have designed and implemented a large scale par-

allel iterative graph processing framework named GRACE, which
exposes a synchronous iterative graph programming model to the
users while enabling both synchronous and user-specified asyn-
chronous execution policies. Our work makes the following three
contributions:

(1) We present GRACE, a general parallel graph processing frame-
work that provides an iterative synchronous programming model
for developers. The programming model captures data dependen-
cies using messages passed between neighboring vertices like the
BSP model (Section 3).

(2) We describe the parallel runtime of GRACE, which follows
the BSP model for executing the coded application. At the same
time GRACE allows users to flexibly specify their own (asynchro-
nous) execution policies by explicitly relaxing data dependencies
associated with messages in order to achieve fast convergence. By
doing so GRACE maintains both fast convergence through cus-
tomized (asynchronous) execution policies of the application and
automatic scalability through the BSP model at run time (Section 4).

(3) We experiment with four large-scale real-world graph pro-
cessing applications written in a shared-memory prototype imple-
mentation of GRACE (Section 5). Our experiments show that even
though programs in GRACE are written synchronously, we can
achieve convergence rates and performance similar to that of com-
pletely general asynchronous execution engines, while still main-
taining nearly linear parallel speedup by following the BSP model
to minimize concurrency control overheads (Section 6).

We discuss related work in Section 7 and conclude in Section 8.
We begin our presentation by introducing iterative graph processing
applications in Section 2.

2. ITERATIVE GRAPH PROCESSING
Iterative graph processing applications are computations over

graphs that update data in the graph in iterations or ticks. During
each tick the data in the graph is updated, and the computation
terminates after a fixed number of ticks have been executed [9] or
the computation has converged [13]. We use the belief propagation
algorithm on pairwise Markov random fields (MRFs) as a running
example to illustrate the computation patterns of an iterative graph
processing application [26].
Running Example: Belief Propagation on Pairwise MRF. The
pairwise MRF is a widely used undirected graphical model which
can compactly represent complex probability distributions. Con-
sider n discrete random variables X = {X

1

, X
2

, · · · , X
n

} taking
on values X

i

2 ⌦, where ⌦ is the sample space.1 A pairwise MRF
is an undirected graph G(V,E) where vertices represent random
variables and edges represent dependencies. Each vertex u is as-
sociated with the potential function �

u

: ⌦ 7! R+ and each edge
e
u,v

is associated with the potential function �
u,v

: ⌦⇥⌦ 7! R+.
The joint distribution is proportional to the product of the potential
functions:

p(x
1

, x
2

, · · · , x
n

) /
Y

u2V

�
u

(x
u

) ·
Y

(u,v)2E

�
u,v

(x
u

, x
v

)

Computing the marginal distribution for a random variable (i.e.,
a vertex) is the core procedure for many learning and inference
tasks in MRF. Belief propagation (BP), which works by repeat-
edly passing messages over the graph to calculate marginal distri-
butions until the computation converges, is one of the most popular
algorithms used for this task [12]. The message m

u!v

(x
v

) sent

1In general, each random variable can have its own sample space.
For simplicity of discussion, we assume that all the random vari-
ables have the same sample space.

Belief	
 PropagaBon	

•  Belief	
 at	
 a	
 vertex	
 depends	
 on	
 messages	
 received	
 from	

neighboring	
 verBces	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 6	

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

13

𝑣

𝑚௩→௨ (𝑥௨)

𝑢

𝑏௨ 𝑥௨ ∝ ϕ௨(𝑥௨) ෑ 𝑚௪→௨(𝑥௨)
௘ೢ,ೠ∈ா

 (1)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

13

𝑣

𝑚௩→௨ (𝑥௨)

𝑢

𝑏௨ 𝑥௨ ∝ ϕ௨(𝑥௨) ෑ 𝑚௪→௨(𝑥௨)
௘ೢ,ೠ∈ா

 (1)

Belief	
 PropagaBon	

•  Belief	
 at	
 a	
 vertex	
 depends	
 on	
 messages	
 received	
 from	

neighboring	
 verBces	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 7	

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

15

𝑣

𝑚௨→௩ (𝑥௩)

𝑢

𝑏௨ 𝑥௨ ∝ 𝜙௨(𝑥௨) ෑ 𝑚௪→௨(𝑥௨)
௘ೢ,ೠ∈ா

𝑚௨→௩(𝑥௩) ∝ ෍ 𝜙௨,௩(𝑥௨, 𝑥௩) ∙
௫ೠ∈ஐ

𝑏௨(𝑥௨)
𝑚௩→௨(𝑥௨)

(1)

(2)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

13

𝑣

𝑚௩→௨ (𝑥௨)

𝑢

𝑏௨ 𝑥௨ ∝ ϕ௨(𝑥௨) ෑ 𝑚௪→௨(𝑥௨)
௘ೢ,ೠ∈ா

 (1)

Running Example: Belief Propagation

• Based on message passing to
update local belief of each
vertex:

15

𝑣

𝑚௨→௩ (𝑥௩)

𝑢

𝑏௨ 𝑥௨ ∝ 𝜙௨(𝑥௨) ෑ 𝑚௪→௨(𝑥௨)
௘ೢ,ೠ∈ா

𝑚௨→௩(𝑥௩) ∝ ෍ 𝜙௨,௩(𝑥௨, 𝑥௩) ∙
௫ೠ∈ஐ

𝑏௨(𝑥௨)
𝑚௩→௨(𝑥௨)

(1)

(2)

Original	
 BP	
 Algorithm	

Original BP Implementation

16

E

A C

I

D

B

G H

F

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 8	

Original	
 BP	
 Algorithm	
 can	
 be	
 inefficient	
 	

•  Spends	
 Bme	
 updaBng	
 nodes	
 which	
 have	
 already	
 converged	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 9	

Challenge	
 =	
 Boundaries	

Residual	
 BP	
 ImplementaBon	

19

E

A C

I

D

B

G H

F
Scheduler

Residual BP Implementation

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 10	

Residual	
 BP	
 ImplementaBon	

20

E

A C

I

D

B

G H

F
Scheduler

Residual BP Implementation

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 11	

Residual	
 BP	
 ImplementaBon	

21

E

A C

I

D

B

G H

F
Scheduler

Residual BP Implementation

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 12	

Residual	
 BP	
 ImplementaBon	

22

E

A C

I

D

B

G H

F
Scheduler

B

D

Residual BP Implementation

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 13	

Ordering	
 based	
 on	
 residual	
 (max	
 change	
 in	
 message	
 value)	

Residual	
 BP	
 ImplementaBon	

23

E

A C

I

D

B

G H

F
Scheduler

D

Residual BP Implementation

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 14	

Residual	
 BP	
 ImplementaBon	

24

E

A C

I

D

B

G H

F
Scheduler

B

D C

E G

F

B

B A

D

B

E

Residual BP Implementation

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 15	

Residual	
 BP	
 converges	
 faster	

0 5 10 15 20

0.2

0.4

0.6

SMP
AMP
TRMP
RMP

SMP
AMP
TRMP
RMP

time in seconds

%
 o

f r
un

s
co

nv
er

ge
d

0.1

0.2

0.3

0.4

0 20 40 60 80 100
time in seconds

%
 o

f r
un

s
co

nv
er

ge
d

0 20 40 60 80 100
time in seconds

%
 o

f r
un

s
co

nv
er

ge
d SMP

AMP
TRMP
RMP

SMP
AMP
TRMP
RMP

300 500 700 9000

0.2

0.4

0.6

0.8

1

time in seconds

%
 o

f r
un

s
co

nv
er

ge
d

AGBP
RGBP
AGBP
RGBP

(a) (b) (c)

Figure 2: cumulative percentage of converged runs (y-axis) as a function of time (x-axis) for 50 random grids. (a) comparison of our
RMP to the synchronous (SMP), asynchronous (AMP), and TRP (TRMP) variants of the max-product algorithm for 7 × 7 grids with
C = 7. (b) same as (a) for larger 9 × 9 grids. (c) comparison of GBP and our RGBP method for 20 × 20 grids with C = 7.

putational biology. Yanover andWeiss (2003) show that in-
ferring structure via energy minimization can be posed as
an inference problem in a graphical model. The network
for each protein is an independent inference task with a
unique structure and parameterization, containing between
hundreds and thousands of variables of cardinalities 2–81,
and is highly irregular. We applied the different methods to
all networks (from www.cs.huji.ac.il/c̃heny/proteinsMRF.html).
Our implementation of ABP did not converge on 6 protein
networks even when allowed to run for 30minutes (we note
that this is far fewer than the number of networks reported
not to converge by Yanover and Weiss (2003)). In contrast,
our RBP algorithm converged on all networks. In partic-
ular, it took an average 2 1

2
minutes (with a maximum of

4 minutes) to converge on those networks for which ABP
did not converge. In all these models, both the synchronous
SBP variant and TRP did not converge on many more net-
works than even ABP, again demonstrating the importance
of an informed message schedule.

6 Discussion and Future Work
In this work we addressed the task of message schedul-
ing of propagation methods for approximate inference. We
showed that any reasonable asynchronous algorithm con-
verges under similar conditions to that of synchronous
propagation and proved that the convergence rate of a
round-robin asynchronous algorithm is at least as good
as that of its synchronous counterpart. Motivated by this
analysis, we then presented an extremely simple and effi-
cient message scheduling approach that minimizes an up-
per bound on the distance of the current messages from the
fixed point. We demonstrated that our algorithm is signif-
icantly superior to state-of-the-art methods on a variety of
challenging synthetic and real-life problems.

Interestingly, our choice of message schedule had a sig-
nificant effect not only on the rate of convergence but also
on the convergence success. While this phenomenon is not
typically observed in the field of decoding (see for example
Kfir and Kanter (2003)), it is consistent with the observa-

tions made byWainwright et al. (2002). We conjecture that
when using more oblivious update schemes (including both
synchronous and asynchronous), contradictory signals are
obtained from different parts of the network, causing the
oscillations commonly observed in practice. In contrast,
RBP transmits information in a more “purposeful”way, po-
tentially propagating it to other parts of the network before
they have the opportunity to transmit a contradictory signal
that causes oscillations.

Propagation methods that are guaranteed to converge
have been proposed by Yuille (2001) and Welling and Teh
(2001). These methods are fairly complex to implement;
they also provide limited improvements over BP in terms of
accuracy, and no improvement in convergence rate. While
our methods have no convergence guarantees for general
graphs, they are easy to implement, and appear to converge
on almost all but very hard synthetic problems. Further-
more, our method converges much more quickly than stan-
dard BP or state-of-the-art TRP.

A number of sequential message schedules have been
proposed for message decoding using belief propagation;
these schedules have been shown to converge faster than
synchronous updates. Some works, notably that of Wang
et al. (2005), have formally analyzed convergence rates
for different update schemes for low-density parity-check
codes, under certain idealized assumptions, showing, for
example, that a simple asynchronous propagation approach
is twice as fast as the fully synchronous variant. Both the
algorithms proposed in this literature and the methods used
in the analysis are highly specialized to coding networks,
and it is not clear how they can be applied to general infer-
ence problems outside of the field of decoding.

Our approach defines a whole family of algorithms and
can be applied to practically any message propagation al-
gorithm. We demonstrated that, in addition to improving
BP, our method is effective in improving the performance
of the max-product algorithm as well as that of generalized
belief propagation. Importantly, our approach can in fact be
applied to a wide variety of methods that iteratively apply a

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 16	

[Elidan	
 et	
 al	
 UAI	
 2006]	

Summary	

•  Asynchronous	
 serial	
 graph	
 algorithms	
 can	
 converge	
 faster	
 than	

synchronous	
 parallel	
 graph	
 algorithms	
 	

•  Is	
 there	
 a	
 way	
 to	
 correctly	
 transform	
 asynchronous	
 serial	

algorithms	
 to	
 run	
 in	
 a	
 parallel	
 seYng?	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 17	

GRAPHLAB	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 18	

GraphLab	

19	

Data	
 Graph	

Shared	
 Data	
 Table	

Scheduling	

Update	
 FuncBons	
 and	
 Scopes	

Data	
 Graph	

20	

A	
 Graph	
 with	
 data	
 associated	
 with	
 every	
 vertex	
 and	
 edge.	

:Data	

x3:	
 current	
 belief	

Φ(X6,X9):	
 Binary	
 potenBal	

	

X1	
 X2	
 X3	

X5	
 X6	
 X7	

X8	
 X9	
 X10	

X4	

X11	

Update	
 FuncBons	

21	

Update	
 Func=ons	
 are	
 operaBons	
 which	
 are	
 applied	
 on	
 a	
 vertex	
 and	
 transform	
 the	
 data	
 in	

the	
 scope	
 of	
 the	
 vertex	

BP	
 Update:	

	
 -­‐	
 Read	
 messages	
 on	
 adjacent	
 	

	
 	
 	
 edges	

	
 -­‐	
 Read	
 edge	
 potenBals	

	
 -­‐	
 Compute	
 a	
 new	
 belief	
 for	
 	

	
 	
 	
 the	
 current	
 vertex	
 	

	
 -­‐	
 Write	
 new	
 messages	
 on	
 edges	

Update	
 FuncBon	
 Schedule	

22	

e f g

k j i h

d c b a CPU 1

CPU 2

a

h

a

i

b

d

Update	
 FuncBon	
 Schedule	

23	

e f g

k j i h

d c b a CPU 1

CPU 2

a

i

b

d

StaBc	
 Schedule	

Scheduler	
 determines	
 the	
 	

order	
 of	
 Update FuncBon	
 EvaluaBons	

	

24	

Synchronous	
 Schedule:	

	
 	
 	
 Every	
 vertex	
 updated	
 simultaneously	

Round	
 Robin	
 Schedule:	

	
 	
 Every	
 vertex	
 updated	
 sequenBally	

Converged	
 Slowly	
 Converging	

Focus	
 Effort	

Need	
 for	
 Dynamic	
 Scheduling	

25	

Dynamic	
 Schedule	

26	

e f g

k j i h

d c b a CPU 1

CPU 2

a

h

a

b

b

i

Dynamic	
 Schedule	

Update	
 FuncBons	
 can	
 insert	
 new	
 tasks	
 into	
 the	
 schedule	

	

27	

FIFO	
 Queue	
 Wildfire	
 BP	
 [SelvaBci	
 et	
 al.]	

Priority	
 Queue	
 Residual	
 BP	
 [Elidan	
 et	
 al.]	

	

Splash	
 Schedule	
 Splash	
 BP	
 [Gonzalez	
 et	
 al.]	

Global	
 InformaBon	

What	
 if	
 we	
 need	
 global	
 informaBon?	

28	

Sum	
 of	
 all	
 the	
 verBces?	

Algorithm	
 Parameters?	

Sufficient	
 StaBsBcs?	

Shared	
 Data	
 Table	
 (SDT)	

•  Global	
 constant	
 parameters	

29	

Constant:
Total # Samples

Constant:
Temperature

Accumulate	
 FuncBon:	

Sync	
 OperaBon	

•  Sync	
 is	
 a	
 fold/reduce	
 operaBon	
 over	
 the	
 graph	

30	

Sync!	

1 3 2

1 2 1 1

3 2 5 1

0

Apply	
 FuncBon:	

Add	

Divide	
 by	
 |V|	

1

6

8

9 22 2

" Accumulate	
 performs	
 an	
 aggregaBon	
 over	
 verBces	

" Apply	
 makes	
 a	
 final	
 modificaBon	
 to	
 the	
 accumulated	
 data	

" Example:	
 Compute	
 the	
 average	
 of	
 all	
 the	
 verBces	

Shared	
 Data	
 Table	
 (SDT)	

•  Global	
 constant	
 parameters	

•  Global	
 computaBon	
 (Sync	
 Opera=on)	

31	

Constant:
Total # Samples

Sync: Sample
Statistics

Sync: Loglikelihood Constant:
Temperature

Safety	

and	

Consistency	

32	

Write-­‐Write	
 Race	

33	

Write-­‐Write	
 Race	
 	

If	
 adjacent	
 update	
 funcBons	
 write	
 simultaneously	

Lek	
 update	
 writes:	
 Right	
 update	
 writes:	
 Final	
 Value	

Race	
 CondiBons	
 +	
 Deadlocks	

•  Just	
 one	
 of	
 the	
 many	
 possible	
 races	

•  Race-­‐free	
 code	
 is	
 extremely	
 difficult	
 to	
 write	

	

34	

GraphLab	
 design	
 ensures	
 	

race-­‐free	
 operaBon	

Scope	
 Rules	

35	

Guaranteed	
 safety	
 for	
 all	
 update	
 funcBons	

Full	
 Consistency	

36	

Only	
 allow	
 update	
 funcBons	
 two	
 verBces	
 apart	
 to	
 be	
 run	
 in	
 parallel	

Reduced	
 opportuniBes	
 for	
 parallelism	

Obtaining	
 More	
 Parallelism	

37	

Not	
 all	
 update	
 funcBons	
 will	
 modify	
 the	
 enBre	
 scope!	

Belief	
 Propaga=on:	
 Only	
 uses	
 edge	
 data	

Gibbs	
 Sampling:	
 Only	
 needs	
 to	
 read	
 adjacent	
 verBces	

	

Edge	
 Consistency	

38	

Obtaining	
 More	
 Parallelism	

39	

“Map”	
 opera=ons.	
 Feature	
 extracBon	
 on	
 vertex	
 data	

Vertex	
 Consistency	

40	

SequenBal	
 Consistency	

GraphLab	
 guarantees	
 sequen=al	
 consistency	

41	

For	
 every	
 parallel	
 execu=on,	
 there	
 exists	
 a	
 sequen=al	
 execu=on	
 of	
 update	
 funcBons	

which	
 will	
 produce	
 the	
 same	
 result.	
 	

CPU 1

CPU 2

CPU 1

Parallel	

SequenBal	

Bme	

GraphLab	

42	

Data	
 Graph	

Shared	
 Data	
 Table	

Scheduling	

Update	
 FuncBons	
 and	
 Scopes	

DISTRIBUTED	
 GRAPHLAB	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 43	

DistribuBng	
 GraphLab	

•  NOT	
 SHARED-­‐NOTHING	
 (unlike	
 MapReduce	
 /	
 Pregel)	
 	

–  Need	
 to	
 have	
 distributed	
 shared	
 memory	
 	

•  No	
 change	
 to	
 the	
 update	
 step	

•  Need	
 to	
 to	
 distributed	
 scheduling	

•  Need	
 to	
 ensure	
 distributed	
 consistency	

•  Need	
 to	
 ensure	
 fault	
 tolerance	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 44	

Distributed	
 Graph	

45	

ParBBon	
 the	
 graph	
 across	
 mulBple	
 machines.	

Distributed	
 Graph	

46	

•  Ghost	
 verBces	
 maintain	
 adjacency	
 structure	
 and	
 replicate	

remote	
 data.	

“ghost”	
 verBces	

Distributed	
 Graph	

47	

•  Cut	
 efficiently	
 using	
 HPC	
 Graph	
 parBBoning	
 tools	

(ParMeBs	
 /	
 Scotch	
 /	
 …)	

“ghost”	
 verBces	

Pagerank(scope){	

	
 	
 //	
 Update	
 the	
 current	
 vertex	
 data	

	

	

	

	

	

	

	
 	
 //	
 Reschedule	
 Neighbors	
 if	
 needed	

	
 	
 if	
 vertex.PageRank	
 changes	
 then	
 	

	
 	
 	
 	
 reschedule_all_neighbors;	
 	

}	

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank

Update	
 FuncBons	

User-­‐defined	
 program:	
 applied	
 to	
 a	

vertex	
 and	
 transforms	
 data	
 in	
 scope	
 of	
 vertex	

48	

Distributed	
 Scheduling	

e

i h

b a

f g

k j

d c

a

h

f

g

j

c b

i

Each	
 machine	
 maintains	
 a	
 schedule	
 over	
 the	
 verBces	
 it	
 owns.	

49	
 Distributed Consensus used to identify completion

SoluBon	
 1	

Graph	
 Coloring	

Distributed	

Consistency	

SoluBon	
 2	

Distributed	
 Locking	

Edge	
 Consistency	
 via	
 Graph	
 Coloring	

VerBces	
 of	
 the	
 same	
 color	
 are	
 all	
 at	
 least	
 one	
 vertex	
 apart.	

Therefore,	
 All	
 verBces	
 of	
 the	
 same	
 color	
 can	
 be	
 run	
 in	
 parallel!	

51	

ChromaBc	
 Distributed	
 Engine	

Ti
m
e	

Execute tasks
on all vertices of

color 0

Execute tasks
on all vertices of

color 0

Ghost Synchronization Completion + Barrier

Execute tasks
on all vertices of

color 1

Execute tasks
on all vertices of

color 1

Ghost Synchronization Completion + Barrier

52	

Problems	

•  Require	
 a	
 graph	
 coloring	
 to	
 be	
 available.	

	

	

•  Frequent	
 Barriers	
 make	
 it	
 extremely	
 inefficient	
 for	
 highly	

dynamic	
 systems	
 where	
 only	
 a	
 small	
 number	
 of	
 verBces	
 are	

acBve	
 in	
 each	
 round.	

53	

SoluBon	
 1	

Graph	
 Coloring	

Distributed	

Consistency	

SoluBon	
 2	

Distributed	
 Locking	

Distributed	
 Locking	

Edge	
 Consistency	
 can	
 be	
 guaranteed	
 through	
 locking.	

:	
 RW	
 Lock	

55	

Consistency	
 Through	
 Locking	

Acquire	
 write-­‐lock	
 on	
 center	
 vertex,	
 read-­‐lock	
 on	
 adjacent.	

56	

" Solution
" Pipelining

CPU Machine 1

Machine 2

A C

B D

Consistency	
 Through	
 Locking	

Multicore Setting

•  PThread	
 RW-­‐Locks	

Distributed Setting

•  Distributed	
 Locks	

" Challenges
" Latency

A C

B D

A C

B D

A

57

No	
 Pipelining	

lock scope 1

Process request 1

scope	
 1	
 acquired
update_funcBon	
 1
release	
 scope	
 1

Process release 1

Ti
m
e	

58	

Pipelining	
 /	
 Latency	
 Hiding	

Hide	
 latency	
 using	
 pipelining	

lock scope 1

Process request 1

scope	
 1	
 acquired

update_funcBon	
 1
release	
 scope	
 1

Process release 1

lock scope 2

Ti
m
e	
 lock scope 3 Process request 2

Process request 3
scope	
 2	
 acquired
scope	
 3	
 acquired

update_funcBon	
 2
release	
 scope	
 2 59	

Checkpoints	
 for	
 Fault	
 Tolerance	

1:	
 Stop	
 the	
 world	

2:	
 Write	
 state	
 to	
 disk	

Snapshot	
 Performance	

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

sync. snapshot

no snapshot

async. snapshot

61	

No Snapshot

Snapshot	

One	
 slow	

machine	

Because	
 we	
 have	
 to	
 stop	
 the	
 world,	
 	

One	
 slow	
 machine	
 slows	
 everything	
 down!	

Snapshot	
 =me	

Slow	
 machine	

Bexer	
 CheckpoinBng	

•  Based	
 on	
 [Chandy,	
 Lamport	
 ‘85]	

•  Edge	
 consistent	
 update	
 funcBon	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 62	

4 Machines 8 Machines 16 Machines0

50

100

150

200

250

300

Number of Machines

R
un

tim
e

(s
)

(a) Runtime

100 1000 100000

50

100

150

200

250

Maximum Pipeline Length

R
un

tim
e

(s
)

(b) Pipeline Length

Figure 3: (a) Plots the runtime of the Distributed Locking En-
gine on a synthetic loopy belief propagation problem varying
the number of machines with pipeline length = 10, 000. (b)
Plots the runtime of the Distributed Locking Engine on the
same synthetic problem on 16 machines (128 CPUs), varying
the pipeline length. Increasing pipeline length improves perfor-
mance with diminishing returns.

Algorithm 5: Snapshot Update on vertex v

if v was already snapshotted then
Quit

Save Dv // Save current vertex

foreach u 2 N[v] do // Loop over neighbors

if u was not snapshotted then
Save data on edge Du$v

Schedule u for a Snapshot Update

Mark v as snapshotted

4.3 Fault Tolerance
We introduce fault tolerance to the distributed GraphLab frame-

work using a distributed checkpoint mechanism. In the event of a
failure, the system is recovered from the last checkpoint. We evalu-
ate two strategies to construct distributed snapshots: a synchronous
method that suspends all computation while the snapshot is con-
structed, and an asynchronous method that incrementally constructs
a snapshot without suspending execution.

Synchronous snapshots are constructed by suspending execution
of update functions, flushing all communication channels, and then
saving all modified data since the last snapshot. Changes are written
to journal files in a distributed file-system and can be used to restart
the execution at any previous snapshot.

Unfortunately, synchronous snapshots expose the GraphLab en-
gine to the same inefficiencies of synchronous computation (Sec. 2)
that GraphLab is trying to address. Therefore we designed a fully
asynchronous alternative based on the Chandy-Lamport [6] snap-
shot. Using the GraphLab abstraction we designed and implemented
a variant of the Chandy-Lamport snapshot specifically tailored to
the GraphLab data-graph and execution model. The resulting algo-
rithm (Alg. 5) is expressed as an update function and guarantees a
consistent snapshot under the following conditions:

• Edge Consistency is used on all update functions,
• Schedule completes before the scope is unlocked,
• the Snapshot Update is prioritized over other update functions,

which are satisfied with minimal changes to the GraphLab engine.
The proof of correctness follows naturally from the original proof in
[6] with the machines and channels replaced by vertices and edges
and messages corresponding to scope modifications.

Both the synchronous and asynchronous snapshots are initiated
at fixed intervals. The choice of interval must balance the cost of
constructing the checkpoint with the computation lost since the last

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

baseline

async. snapshot

sync. snapshot

(a) Snapshot

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

baseline

async. snapshot

sync. snapshot

(b) Snapshot with Delay

Figure 4: (a) The number of vertices updated vs. time elapsed
for 10 iterations comparing asynchronous and synchronous
snapshots. Synchronous snapshots (completed in 109 seconds)
have the characteristic “flatline” while asynchronous snapshots
(completed in 104 seconds) allow computation to proceed. (b)
Same setup as in (a) but with a single machine fault lasting 15
seconds. As a result of the 15 second delay the asynchronous
snapshot incurs only a 3 second penalty while the synchronous
snapshot incurs a 16 second penalty.

checkpoint in the event of a failure. Young et al. [37] derived a
first-order approximation to the optimal checkpoint interval:

TInterval =
p

2TcheckpointTMTBF (3)

where Tcheckpoint is the time it takes to complete the checkpoint and
TMTBF is the mean time between failures for the cluster. For instance,
using a cluster of 64 machines, a per machine MTBF of 1 year, and
a checkpoint time of 2 min leads to optimal checkpoint intervals of
3 hrs. Therefore, for the deployments considered in our experiments,
even taking pessimistic assumptions for TMTBF, leads to checkpoint
intervals that far exceed the runtime of our experiments and in fact
also exceed the Hadoop experiment runtimes. This brings into
question the emphasis on strong fault tolerance in Hadoop. Better
performance can be obtained by balancing fault tolerance costs
against that of a job restart.

Evaluation: We evaluate the performance of the snapshotting
algorithms on the same synthetic mesh problem described in the
previous section, running on 16 machines (128 processors). We
configure the implementation to issue exactly one snapshot in the
middle of the second iteration. In Fig. 4(a) we plot the number of up-
dates completed against time elapsed. The effect of the synchronous
snapshot and the asynchronous snapshot can be clearly observed:
synchronous snapshots stops execution, while the asynchronous
snapshot only slows down execution.

The benefits of asynchronous snapshots become more apparent in
the multi-tenancy setting where variation in system performance
exacerbate the cost of synchronous operations. We simulate this on
Amazon EC2 by halting one of the processes for 15 seconds after
snapshot begins. In figures Fig. 4(b) we again plot the number of
updates completed against time elapsed and we observe that the
asynchronous snapshot is minimally affected by the simulated fail-
ure (adding only 3 seconds to the runtime), while the synchronous
snapshot experiences a full 15 second increase in runtime.

4.4 System Design
In Fig. 5(a), we provide a high-level overview of a GraphLab

system. The user begins by constructing the atom graph representa-
tion on a Distributed File System (DFS). If hashed partitioning is
used, the construction process is Map-Reduceable where a map is
performed over each vertex and edge, and each reducer accumulates
an atom file. The atom journal format allows future changes to the
graph to be appended without reprocessing all the data.

Async.	
 Snapshot	
 Performance	

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

sync. snapshot

no snapshot

async. snapshot

63	

No Snapshot

Snapshot	

One	
 slow	

machine	

No	
 penalty	
 incurred	
 by	
 the	
 slow	
 machine!	

Summary	

•  Asynchronous	
 serial	
 graph	
 algorithms	
 can	
 converge	
 faster	
 than	

synchronous	
 parallel	
 graph	
 algorithms	
 	

•  GraphLab	
 provides	
 high	
 level	
 abstracBons	
 for	
 wriBng	

asynchronous	
 graph	
 algorithms	

–  Takes	
 care	
 of	
 consistency	
 and	
 scheduling	

•  Distributed	
 GraphLab	
 	

–  Graph	
 processing	
 using	
 color-­‐steps	

–  Consistency	
 ensured	
 via	
 pipelined	
 distributed	
 locking	

–  Fault	
 tolerance	
 via	
 fine	
 grained	
 checkpoinBng	

Lecture	
 15	
 :	
 590.02	
 Spring	
 13	
 64	

