Asynchronous Graph Processing

CompSci 590.03 Instructor: Ashwin Machanavajjhala

(slides adapted from Graphlab talks at <u>UAI'10</u> & <u>VLDB '12</u> and Gouzhang Wang's talk at CIDR 2013)

Lecture 15: 590.02 Spring 13

Recap: Pregel

Figure 2: Maximum Value Example. Dotted lines are messages. Shaded vertices have voted to halt.

Graph Processing

Dependency Graph

Lecture 15: 590.02 Spring 13

This Class

Asynchronous Graph Processing

Lecture 15: 590.02 Spring 13

Example: Belief Propagation

$$p(x_1, x_2, \dots, x_n) \propto \prod_{u \in V} \phi_u(x_u) \cdot \prod_{(u,v) \in E} \phi_{u,v}(x_u, x_v)$$

Want to compute marginal distribution at each node.

Belief Propagation

 Belief at a vertex depends on messages received from neighboring vertices

$$b_u(x_u) \propto \varphi_u(x_u) \prod_{e_{w,u} \in E} m_{w \to u}(x_u)$$

Belief Propagation

 Belief at a vertex depends on messages received from neighboring vertices

$$b_u(x_u) \propto \phi_u(x_u) \prod_{e_{w,u} \in E} m_{w \to u}(x_u)$$

$$m_{u \to v}(x_v) \propto \sum_{x_u \in \Omega} \phi_{u,v}(x_u, x_v) \cdot \frac{b_u(x_u)}{m_{v \to u}(x_u)}$$

Original BP Algorithm

Original BP Algorithm can be inefficient

Spends time updating nodes which have already converged

1 DUKE

Ordering based on residual (max change in message value)

Residual BP converges faster

[Elidan et al UAI 2006]

Lecture 15: 590.02 Spring 13

16

Summary

- Asynchronous serial graph algorithms can converge faster than synchronous parallel graph algorithms
- Is there a way to correctly transform asynchronous serial algorithms to run in a parallel setting?

GRAPHLAB

GraphLab

Data Graph

Shared Data Table

Update Functions and Scopes

Data Graph

A **Graph** with data associated with every vertex and edge.

Update Functions

Update Functions are operations which are applied on a vertex and transform the data in the **scope** of the vertex

Update Function Schedule

Update Function Schedule

Static Schedule

Scheduler determines the order of Update Function Evaluations

Synchronous Schedule:

Every vertex updated simultaneously

Round Robin Schedule:

Every vertex updated sequentially

Need for Dynamic Scheduling

Dynamic Schedule

Dynamic Schedule

Update Functions can insert new tasks into the schedule

Global Information

What if we need global information?

Algorithm Parameters?

Sufficient Statistics?

Sum of all the vertices?

Shared Data Table (SDT)

Global constant parameters

Sync Operation

- Sync is a fold/reduce operation over the graph
- Accumulate performs an aggregation over vertices
- Apply makes a final modification to the accumulated data
- Example: Compute the average of all the vertices

Shared Data Table (SDT)

- Global constant parameters
- Global computation (Sync Operation)

Safety and Consistency

Write-Write Race

Write-Write Race

If adjacent update functions write simultaneously

Race Conditions + Deadlocks

- Just one of the many possible races
- Race-free code is extremely difficult to write

GraphLab design ensures race-free operation

Scope Rules

Guaranteed safety for all update functions

Full Consistency

Only allow update functions two vertices apart to be run in parallel Reduced opportunities for parallelism

36

Obtaining More Parallelism

Not all update functions will modify the entire scope!

Belief Propagation: Only uses edge data

Gibbs Sampling: Only needs to read adjacent vertices

Edge Consistency

Obtaining More Parallelism

"Map" operations. Feature extraction on vertex data

Vertex Consistency

Sequential Consistency

GraphLab guarantees sequential consistency

For **every parallel execution**, there exists a **sequential execution** of update functions which will produce the same result.

GraphLab

Data Graph

Shared Data Table

Update Functions and Scopes

DISTRIBUTED GRAPHLAB

Distributing GraphLab

- NOT SHARED-NOTHING (unlike MapReduce / Pregel)
 - Need to have distributed shared memory
- No change to the update step
- Need to to distributed scheduling
- Need to ensure distributed consistency
- Need to ensure fault tolerance

Distributed Graph

Partition the graph across multiple machines.

Distributed Graph

• Ghost vertices maintain adjacency structure and replicate remote data.

Distributed Graph

 Cut efficiently using HPC Graph partitioning tools (ParMetis / Scotch / ...)

Update Functions

User-defined program: applied to a **vertex** and transforms data in **scope** of vertex

Distributed Scheduling

Each machine maintains a schedule over the vertices it owns.

Distributed Consistency

Solution 1

Solution 2

Graph Coloring

Distributed Locking

Edge Consistency via Graph Coloring

Vertices of the same color are all at least one vertex apart.

Therefore, All vertices of the same color can be run in parallel!

Chromatic Distributed Engine

Problems

Require a graph coloring to be available.

 Frequent Barriers make it extremely inefficient for highly dynamic systems where only a small number of vertices are active in each round.

Distributed Consistency

Solution 1

Solution 2

Graph Coloring

Distributed Locking

Distributed Locking

Edge Consistency can be guaranteed through locking.

55

Consistency Through Locking

Acquire write-lock on center vertex, read-lock on adjacent.

Consistency Through Locking

Multicore Setting

PThread RW-Locks

Distributed Setting

- Distributed Locks
- Challenges
 - Latency
- Solution
 - Pipelining

Pipelining / Latency Hiding

Hide latency using pipelining

Ime

Checkpoints for Fault Tolerance

1: Stop the world

2: Write state to disk

Snapshot Performance

Because we have to stop the world, One slow machine slows everything down!

Better Checkpointing

- Based on [Chandy, Lamport '85]
- Edge consistent update function

```
Algorithm 5: Snapshot Update on vertex v

if v was already snapshotted then

\sqsubseteq Quit

Save D_v = \sqrt{\sqrt{-Save}} gurrent, wortex
```

```
Save D_v // Save current vertex foreach u \in \mathbf{N}[v] do // Loop over neighbors if u was not snapshotted then
```

Save data on edge $D_{u \leftrightarrow v}$ Schedule u for a Snapshot Update

Mark v as snapshotted

Async. Snapshot Performance

No penalty incurred by the slow machine!

Summary

- Asynchronous serial graph algorithms can converge faster than synchronous parallel graph algorithms
- GraphLab provides high level abstractions for writing asynchronous graph algorithms
 - Takes care of consistency and scheduling
- Distributed GraphLab
 - Graph processing using color-steps
 - Consistency ensured via pipelined distributed locking
 - Fault tolerance via fine grained checkpointing

