Asynchronous Graph Processing

CompSci 590.03
Instructor: Ashwin Machanavajjhala

(slides adapted from Graphlab talks at UAI’10 & VLDB 12
and Gouzhang Wang’s talk at CIDR 2013)

Lecture 15 : 590.02 Spring 13 1 DUke

UNIVYERSITY

Recap: Pregel

@@ Superstep 0
‘—’@ Superstep 1
@ Superstep 2
@ Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

Lecture 15 : 590.02 Spring 13 2 Duke

UNIVYERSITY

Graph Processing

Dependency Local Iterative
Graph Updates Computation

My Interests

Friends
Interests

Lecture 15 : 590.02 Spring 13 3 DUke

UNIVYERSITY

This Class

* Asynchronous Graph Processing

Lecture 15 : 590.02 Spring 13 4 DUke

UNIVYERSITY

Example: Belief Propagation

p(x1, 2, zn) o< || dulza) -] duw(@u =)

ueVv (u,v)ERE
 Want to compute marginal distribution at each node.

Lecture 15 : 590.02 Spring 13 5 Duke

UNIVYERSITY

Belief Propagation

* Belief at a vertex depends on messages received from
neighboring vertices

by, (xy,) < by (xy) 1_[My (Xy)

ewu€E

Lecture 15 : 590.02 Spring 13 6 DUke

UNIVYERSITY

Belief Propagation

Belief at a vertex depends on messages received from

neighboring vertices
@

buCe) % du(w) | | muuCry Muow ()

ewu€E

by, (xy,)
My (X))

mu—m(xv) X z ¢u,v(xur xv)]

X, EQ

Lecture 15 : 590.02 Spring 13 7 DUke

UNIVYERSITY

Original BP Algorithm

Lecture 15 :590.02 Spring 13

Original BP Algorithm can be inefficient

* Spends time updating nodes which have already converged

Challenge = Boundaries

Lecture 15 : 590.02 Spring 13 9 Duke

UNIVYERSITY

Residual BP Implementation

Scheduler

N
Lecture 15 : 590.02 Spring 13 10 u ul&c

UNIVYERSITY

Residual BP Implementation

Scheduler

Lecture 15 : 590.02 Spring 13 11 UUKe

UNIVYERSITY

Residual BP Implementation

Scheduler

Lecture 15 : 590.02 Spring 13 12 UuKe

UNIVYERSITY

Residual BP Implementation

Ordering based on residual (max change in message value)

Lecture 15 : 590.02 Spring 13 13 UuKe

UNIVYERSITY

Residual BP Implementation

©

Scheduler

Lecture 15 : 590.02 Spring 13 14 U UKe

UNIVYERSITY

Residual BP Implementation

@
O,

O
G,

Scheduler

Lecture 15 : 590.02 Spring 13 15 U uKe

UNIVYERSITY

Residual BP converges faster
[Elidan et al UAI 2006]

—
T

o
o)

o
N

% of runs converged
o
(o)}

o
N

—-= AGBP
— RGBP

300 500 700

900
time in seconds DUke
Lecture 15 :590.02 Spring 13 16

UNIVYERSITY

Summary

Asynchronous serial graph algorithms can converge faster than
synchronous parallel graph algorithms

Is there a way to correctly transform asynchronous serial
algorithms to run in a parallel setting?

Lecture 15 : 590.02 Spring 13 17 Duke

UNITWVYERSIT Y

GRAPHLAB

Lecture 15 :590.02 Spring 13

IIIIIIIIII

Graphlab

Data Graph
O———=

Shared Data Table

| w | J O

Update Functions and Scopes

Duk
19

UNIVYERSITY

Data Graph

A Graph with data associated with every vertex and edge.
|

_ . B
)) —) — i— W — 4
/"\ X5: current belief

.0 T
/[

B & u -|
[\ v
— - —_ —)= — = O(X.,X,): Binary potential
[l Tl Yl Tl I 'nl_Uenl TNRSES

T Duke

UNIVYERSITY

Update Functions

Update Functions are operations which are applied on a vertex and transform the data in
the scope of the vertex

BP Update:

- Read messages on adjacent
edges

- Read edge potentials

- Compute a new belief for

the current vertex
- Write new messages on edges

Duke

UNITIVYERSITY

)

© e 0666

Update Function Schedule

Duke

UNITIVYERSITY

© e 0@

Update Function Schedule

Duke

UNITIVYERSITY

Static Schedule

Scheduler determines the
order of Update Function Evaluations

Synchronous Schedule:
Every vertex updated simultaneously

Round Robin Schedule:
Every vertex updated sequentially

Duke

UNIVYERSITY

Need for Dynamic Scheduling

Converged Slowly Converging
Focus Effort

)

. C

UNIVYERSITY

© e 6 @

Dynamic Schedule

Duke

UNITIVYERSITY

Dynamic Schedule

Update Functions can insert new tasks into the schedule

FIFO Queue > Wildfire BP [Selvatici et al.]

Splash Schedule

Priority Queue < > Residual BP [Elidan et al.]

> Splash BP [Gonzalez et al.]

Duke

UNIVYERSITY

Global Information

o (- (] O

O @, @ O

What if we need global information?

Algorithm Parameters?

Sufficient Statistics?

Sum of all the vertices? D
N uke

UNIVYERSITY

Shared Data Table (SDT)

e Global constant parameters

Constant:

J

Duke

UNIVYERSITY

Sync Operation

Sync is a fold/reduce operation over the graph
Accumulate performs an aggregation over vertices

Apply makes a final modification to the accumulated data

Example: Compute the average of all the vertices

UNIVYERSITY

Shared Data Table (SDT)

e Global constant parameters
* Global computation (Sync Operation)

- Constant:

Sync: Loglikelihood

Sync: Sample
Statistics

Duke

UNIEVYERSIT XY

Safety
and
Consistency

Duke.

UNIVYERSITY

Write-Write Race

Write-Write Race
If adjacent update functions write simultaneously

T A e

A Left update writes: A Final Value ARight update writes:

Race Conditions + Deadlocks

e Just one of the many possible races
 Race-free code is extremely difficult to write

GraphlLab design ensures
race-free operation

Duke

UNIVYERSITY

Scope Rules

Full Consistency

—

QO\ﬂ

Guaranteed safety for all update functions

_Duke

UNIVYERSITY

Full Consistency

Full Consistency

Only allow update functions two vertices apart to be run in parallel

Reduced opportunities for parallelism
) DU.](G

UNIVYERSITY

Obtaining More Parallelism

Not all update functions will modify the entire scope!

Full Consistency

Belief Propagation: Only uses edge data
Gibbs Sampling: Only needs to read adjacent vertices

Duke

UNIVYERSITY

Edge Consistency

tdge Consistency

Duke

UNITIVYERSITY

Obtaining More Parallelism

Full Consistency

gdge Consistency

“Map” operations. Feature extraction on vertex data

_Duke

UNIVYERSITY

Vertex Consistency

ertex Consistency

Duke

UNITIVYERSITY

Sequential Consistency

GraphlLab guarantees sequential consistency

For every parallel execution, there exists a sequential execution of update functions
which will produce the same result.

O—0—@

Parallel

Sequential

1 A ULINU

UNIVYERSITY

Graphlab

Data Graph
O———=

Shared Data Table

| w | J O

Update Functions and Scopes

Duk
42

UNIVYERSITY

DISTRIBUTED GRAPHLAB

Lecture 15 : 590.02 Spring 13 43 DUke

UNIVYERSITY

Distributing GraphLab

NOT SHARED-NOTHING (unlike MapReduce / Pregel)

— Need to have distributed shared memory
No change to the update step

Need to to distributed scheduling
Need to ensure distributed consistency

Need to ensure fault tolerance

Lecture 15 : 590.02 Spring 13 44 Duke

UNIVYERSITY

Distributed Graph

Partition the graph across multiple machines.

O O

N “Duke

UNIVYERSITY

Distributed Graph

* Ghost vertices maintain adjacency structure and replicate
remote data.

O i/

“ghost” vertices

N ~Du

Distributed Graph

e Cut efficiently using HPC Graph partitioning tools
(ParMetis / Scotch / ...)

o (] U (]

“ghost” vertices

O O @,

Update Functions
User-defined program: applied to a

vertex and transforms data in of vertex

W

. Duke

UNIVYERSITY

Distributed Scheduling

Each machine maintains a schedule over the vertices it owns.

N
o
9

Distributed Consensus used to identify completlon e

[0 T

Distributed
Consistency

Solution 1

Graph Coloring

Solution 2

Distributed Locking

Edge Consistency via Graph Coloring

@

@ —O

Vertices of the same color are all at least one vertex apart.
Therefore, All vertices of the same color can be run in parallel!

Duke

UNIVYERSITY

Time

Chromatic Distributed Engine

Duke

UNITIVYERSITY

Problems

Require a graph coloring to be available.

Frequent Barriers make it extremely inefficient for highly
dynamic systems where only a small number of vertices are
active in each round.

Duke

UNLVYVERSITX

Distributed
Consistency

Solution 1

Graph Coloring

Solution 2

Distributed Locking

Distributed Locking

Edge Consistency can be guaranteed through locking.

%

&% : RW Lock

E %

Duke

UNIVYERSITY

Consistency Through Locking

Acquire write-lock on center vertex, read-lock on adjacent.

@
Duke

UNITIVYERSITY

Consistency Through Locking

Multicore Setting
e PThread RW-Locks Q ,' G

Distributed Setting

e Distributed Locks

» Challenges
o Latency

» Solution
» Pipelining

Time

No Pipelining

lock scope 1

scope 1 acquired

update_function 1

release scope 1

\ Process release 1

Process request 1

Duke

UNIVYERSITY

Pipelining / Latency Hiding

Hide latency using pipelining

lock scope 1
lock scope 2

lock scope 3

Process request 1
Process request 2

Process request 3

Time

scope 1 acquired
scope 2 acquired
scope 3 acquired

update_function 1

release scope 1

update function 2
P = Process release 1) |<e
release scope 2 9 l]

UNIVYERSITY

Checkpoints for Fault Tolerance

1: Stop the world
2: Write state to disk

Duke

UNIVYERSITY

Snapshot Performance

Because we have to stop the world,

One slow machine slows everything down!
2.51\ T\

‘No Snapshot‘
2,
5 \ Snapshot
©
9 1.5
>
n
_8 1! Snapshot time \ One slow
S machine
0.5 @
Slow machine
OO 50 100 150 lke
time elapsed(s) 61

RS 1T Y

Better Checkpointing

* Based on [Chandy, Lamport ‘85]
* Edge consistent update function

Algorithm S: Snapshot Update on vertex v

if v was already snapshotted then

| Quit
Save D, // Save current vertex
foreach u € N[v] do // Loop over neighbors

if u was not snapshotted then
Save data on edge Dy «sv
Schedule u for a Snapshot Update

Mark v as snapshotted

Lecture 15 : 590.02 Spring 13 62 Duke

UNIVYERSITY

Async. Snapshot Performance

No penalty incurred by the slow machine!
8

x 10

‘No Snapshot‘

2.5

2,
5 \ Snapshot
©
'§_1.5
n
S 1 \ One slow
> machine
>

O
&)

0 50 100 150 k
time elapsed(s) 63 L e

RS 1T Y

Summary

Asynchronous serial graph algorithms can converge faster than
synchronous parallel graph algorithms

GraphLab provides high level abstractions for writing
asynchronous graph algorithms

— Takes care of consistency and scheduling

Distributed Graphlab

— Graph processing using color-steps

— Consistency ensured via pipelined distributed locking
— Fault tolerance via fine grained checkpointing

Lecture 15 : 590.02 Spring 13 64 Duke

UNITWVYERSIT Y

