Asynchronous Graph Processing

CompSci 590.03
Instructor: Ashwin Machanavajjhala

(slides adapted from Graphlab talks at UAI’10 & VLDB 12
and Gouzhang Wang’s talk at CIDR 2013)
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Recap: Pregel

@@ Superstep 0
‘—’@ Superstep 1
@ Superstep 2
@ Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.
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Graph Processing

Dependency Local Iterative
Graph Updates Computation

My Interests

Friends
Interests
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This Class

* Asynchronous Graph Processing
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Example: Belief Propagation

p(x1, 2, zn) o< || dulza) - ] duw(@u =)

ueVv (u,v)ERE
 Want to compute marginal distribution at each node.
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Belief Propagation

* Belief at a vertex depends on messages received from
neighboring vertices

by, (xy,) < by (xy) 1_[ My (Xy)

ewu€E
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Belief Propagation

Belief at a vertex depends on messages received from

neighboring vertices
@

buCe) % du(w) | | muuCry  Muow ()
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Original BP Algorithm
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Original BP Algorithm can be inefficient

* Spends time updating nodes which have already converged

Challenge = Boundaries
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Residual BP Implementation

Scheduler

N
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Residual BP Implementation

Scheduler

Lecture 15 : 590.02 Spring 13 11 UUKe

UNIVYERSITY



Residual BP Implementation

Scheduler
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Residual BP Implementation

Ordering based on residual (max change in message value)
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Residual BP Implementation

©

Scheduler
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Residual BP Implementation
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Scheduler
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Residual BP converges faster
[Elidan et al UAI 2006]
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Summary

Asynchronous serial graph algorithms can converge faster than
synchronous parallel graph algorithms

Is there a way to correctly transform asynchronous serial
algorithms to run in a parallel setting?
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GRAPHLAB
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Graphlab

Data Graph
O———=

Shared Data Table

| w | J O

Update Functions and Scopes
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Data Graph

A Graph with data associated with every vertex and edge.
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Update Functions

Update Functions are operations which are applied on a vertex and transform the data in
the scope of the vertex

BP Update:

- Read messages on adjacent
edges

- Read edge potentials

- Compute a new belief for

the current vertex
- Write new messages on edges
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Update Function Schedule
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Update Function Schedule
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Static Schedule

Scheduler determines the
order of Update Function Evaluations

Synchronous Schedule:
Every vertex updated simultaneously

Round Robin Schedule:
Every vertex updated sequentially
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Need for Dynamic Scheduling

Converged Slowly Converging
Focus Effort
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Dynamic Schedule
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Dynamic Schedule

Update Functions can insert new tasks into the schedule

FIFO Queue > Wildfire BP [Selvatici et al.]

Splash Schedule

Priority Queue < > Residual BP [Elidan et al.]

> Splash BP [Gonzalez et al.]
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Global Information

o (- (] O

O @, @ O

What if we need global information?

Algorithm Parameters?

Sufficient Statistics?

Sum of all the vertices? D
N uke
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Shared Data Table (SDT)

e Global constant parameters

Constant:

J

Duke

UNIVYERSITY



Sync Operation

Sync is a fold/reduce operation over the graph
Accumulate performs an aggregation over vertices

Apply makes a final modification to the accumulated data

Example: Compute the average of all the vertices

UNIVYERSITY



Shared Data Table (SDT)

e Global constant parameters
* Global computation (Sync Operation)

- Constant:

Sync: Loglikelihood

Sync: Sample
Statistics
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Safety
and
Consistency
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Write-Write Race

Write-Write Race
If adjacent update functions write simultaneously

T A e

A Left update writes: A Final Value ARight update writes:




Race Conditions + Deadlocks

e Just one of the many possible races
 Race-free code is extremely difficult to write

GraphlLab design ensures
race-free operation
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Scope Rules

Full Consistency

—

QO\ﬂ

Guaranteed safety for all update functions
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Full Consistency

Full Consistency

Only allow update functions two vertices apart to be run in parallel

Reduced opportunities for parallelism
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Obtaining More Parallelism

Not all update functions will modify the entire scope!

Full Consistency

Belief Propagation: Only uses edge data
Gibbs Sampling: Only needs to read adjacent vertices

Duke

UNIVYERSITY



Edge Consistency

tdge Consistency
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Obtaining More Parallelism

Full Consistency

gdge Consistency

“Map” operations. Feature extraction on vertex data
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Vertex Consistency

ertex Consistency
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Sequential Consistency

GraphlLab guarantees sequential consistency

For every parallel execution, there exists a sequential execution of update functions
which will produce the same result.
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Parallel

Sequential
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Graphlab

Data Graph
O———=

Shared Data Table

| w | J O

Update Functions and Scopes
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DISTRIBUTED GRAPHLAB
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Distributing GraphLab

NOT SHARED-NOTHING (unlike MapReduce / Pregel)

— Need to have distributed shared memory
No change to the update step

Need to to distributed scheduling
Need to ensure distributed consistency

Need to ensure fault tolerance
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Distributed Graph

Partition the graph across multiple machines.
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Distributed Graph

* Ghost vertices maintain adjacency structure and replicate
remote data.

O i/

“ghost” vertices
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Distributed Graph

e Cut efficiently using HPC Graph partitioning tools
(ParMetis / Scotch / ...)
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“ghost” vertices
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Update Functions
User-defined program: applied to a

vertex and transforms data in of vertex

W

. Duke

UNIVYERSITY



Distributed Scheduling

Each machine maintains a schedule over the vertices it owns.

N
o
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Distributed Consensus used to identify completlon e
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Distributed
Consistency

Solution 1

Graph Coloring

Solution 2

Distributed Locking



Edge Consistency via Graph Coloring

@

@ —O

Vertices of the same color are all at least one vertex apart.
Therefore, All vertices of the same color can be run in parallel!
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Time

Chromatic Distributed Engine
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Problems

Require a graph coloring to be available.

Frequent Barriers make it extremely inefficient for highly
dynamic systems where only a small number of vertices are
active in each round.
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Distributed
Consistency

Solution 1

Graph Coloring

Solution 2

Distributed Locking



Distributed Locking

Edge Consistency can be guaranteed through locking.
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&% : RW Lock
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Consistency Through Locking

Acquire write-lock on center vertex, read-lock on adjacent.
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Consistency Through Locking

Multicore Setting
e PThread RW-Locks Q ,' G

Distributed Setting

e Distributed Locks

» Challenges
o Latency

» Solution
» Pipelining




Time

No Pipelining

lock scope 1

scope 1 acquired

update_function 1

release scope 1

\ Process release 1

Process request 1
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Pipelining / Latency Hiding

Hide latency using pipelining

lock scope 1
lock scope 2

lock scope 3

Process request 1
Process request 2

Process request 3

Time

scope 1 acquired
scope 2 acquired
scope 3 acquired

update_function 1

release scope 1

update function 2
P = Process release 1 ) |<e
release scope 2 9 l ]
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Checkpoints for Fault Tolerance

1: Stop the world
2: Write state to disk
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Snapshot Performance

Because we have to stop the world,

One slow machine slows everything down!
2.51\ T\

‘No Snapshot‘
2,
5 \ Snapshot
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Better Checkpointing

* Based on [Chandy, Lamport ‘85]
* Edge consistent update function

Algorithm S: Snapshot Update on vertex v

if v was already snapshotted then

| Quit
Save D, // Save current vertex
foreach u € N[v] do // Loop over neighbors

if u was not snapshotted then
Save data on edge Dy «sv
Schedule u for a Snapshot Update

Mark v as snapshotted
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Async. Snapshot Performance

No penalty incurred by the slow machine!
8
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Summary

Asynchronous serial graph algorithms can converge faster than
synchronous parallel graph algorithms

GraphLab provides high level abstractions for writing
asynchronous graph algorithms

— Takes care of consistency and scheduling

Distributed Graphlab

— Graph processing using color-steps

— Consistency ensured via pipelined distributed locking
— Fault tolerance via fine grained checkpointing
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