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Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the
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is scheduled for processing, instead of only using messages sent
during the previous tick as in the BSP model. This can further in-
crease the convergence rate since data updates can be incorporated
as soon as they become available. For example, in belief propa-
gation, directly using the most recent updates can significantly im-
prove performance over synchronous update methods that have to
wait until the end of each tick [12].

Although asynchronous execution policies can improve the con-
vergence rate for graph processing applications, asynchronous par-
allel programs are much more difficult to write, debug, and test than
synchronous programs. If an asynchronous implementation does
not output the expected result, it is difficult to locate the source of
the problem: it could be the algorithm itself, a bug in the asyn-
chronous implementation, or simply that the application does not
converge to the same fixpoint under synchronous and asynchronous
executions. Although several asynchronous graph processing plat-
forms have been proposed which attempt to mitigate this problem
by providing some asynchronous programming abstractions, their
abstractions still require users to consider low-level concurrency is-
sues [17, 21]. For example in GraphLab, the unit of calculation is a
single update task over a vertex [21]. When an update task is sched-
uled, it computes based on whatever data is available on the vertex
itself and possibly its neighbors. But since adjacent vertices can be
scheduled simultaneously, users need to worry about read and write
conflicts and choose from different consistency levels to avoid such
conflicts themselves. In Galois, different processes can iterate over
the vertices simultaneously, updating their data in an optimistic par-
allel manner [17]. Users then need to specify which method calls
can safely be interleaved without leading to data races and how
the effects of each method call can be undone when conflicts are
detected. Such conflicts arise because general asynchronous exe-
cution models allow parallel threads to communicate at any time,
not just at the tick boundaries. The resulting concurrent execution
is highly dependent on process scheduling and is not deterministic.
Thus, asynchronous parallel frameworks have to make concurrency
issues explicit to the users.

For these reasons, a synchronous iterative model is clearly the
programming model of choice due to its simplicity. Users can fo-
cus initially on “getting the application right,” and they can eas-
ily debug their code and reason about program correctness without
having to worry about low-level concurrency issues. Then, hav-
ing gained confidence that their encoded graph application logic is
bug-free, users would like to be able to migrate to asynchronous ex-
ecution for better performance without reimplementing their appli-
cations; they should just be able to change the underlying execution
policy in order to switch between synchronous and asynchronous
execution.

Unfortunately, this crucially important development cycle — go-
ing from a simple synchronous specification of a graph process-
ing application to a high-performance asynchronous execution —
is not supported by existing frameworks. Indeed, it is hard to imag-
ine switching from the message-passing communication style of a
synchronous graph program to the shared-variable communication
used in an asynchronous one without reimplementing the applica-
tion. However, in this paper we show such reimplementation is
unnecessary: most of the benefit of asynchronous processing can
be achieved in a message-passing setting by allowing users to ex-
plicitly relax certain constraints imposed on message delivery by
the BSP model.
Contributions of this Paper. In this paper, we combine synchronous
programming with asynchronous execution for large-scale graph
processing by cleanly separating application logic from execution
policies. We have designed and implemented a large scale par-

allel iterative graph processing framework named GRACE, which
exposes a synchronous iterative graph programming model to the
users while enabling both synchronous and user-specified asyn-
chronous execution policies. Our work makes the following three
contributions:

(1) We present GRACE, a general parallel graph processing frame-
work that provides an iterative synchronous programming model
for developers. The programming model captures data dependen-
cies using messages passed between neighboring vertices like the
BSP model (Section 3).

(2) We describe the parallel runtime of GRACE, which follows
the BSP model for executing the coded application. At the same
time GRACE allows users to flexibly specify their own (asynchro-
nous) execution policies by explicitly relaxing data dependencies
associated with messages in order to achieve fast convergence. By
doing so GRACE maintains both fast convergence through cus-
tomized (asynchronous) execution policies of the application and
automatic scalability through the BSP model at run time (Section 4).

(3) We experiment with four large-scale real-world graph pro-
cessing applications written in a shared-memory prototype imple-
mentation of GRACE (Section 5). Our experiments show that even
though programs in GRACE are written synchronously, we can
achieve convergence rates and performance similar to that of com-
pletely general asynchronous execution engines, while still main-
taining nearly linear parallel speedup by following the BSP model
to minimize concurrency control overheads (Section 6).

We discuss related work in Section 7 and conclude in Section 8.
We begin our presentation by introducing iterative graph processing
applications in Section 2.

2. ITERATIVE GRAPH PROCESSING
Iterative graph processing applications are computations over

graphs that update data in the graph in iterations or ticks. During
each tick the data in the graph is updated, and the computation
terminates after a fixed number of ticks have been executed [9] or
the computation has converged [13]. We use the belief propagation
algorithm on pairwise Markov random fields (MRFs) as a running
example to illustrate the computation patterns of an iterative graph
processing application [26].
Running Example: Belief Propagation on Pairwise MRF. The
pairwise MRF is a widely used undirected graphical model which
can compactly represent complex probability distributions. Con-
sider n discrete random variables X = {X

1

, X
2

, · · · , X
n

} taking
on values X

i

2 ⌦, where ⌦ is the sample space.1 A pairwise MRF
is an undirected graph G(V,E) where vertices represent random
variables and edges represent dependencies. Each vertex u is as-
sociated with the potential function �

u

: ⌦ 7! R+ and each edge
e
u,v

is associated with the potential function �
u,v
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The joint distribution is proportional to the product of the potential
functions:
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Computing the marginal distribution for a random variable (i.e.,
a vertex) is the core procedure for many learning and inference
tasks in MRF. Belief propagation (BP), which works by repeat-
edly passing messages over the graph to calculate marginal distri-
butions until the computation converges, is one of the most popular
algorithms used for this task [12]. The message m

u!v

(x
v

) sent

1In general, each random variable can have its own sample space.
For simplicity of discussion, we assume that all the random vari-
ables have the same sample space.
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Figure 2: cumulative percentage of converged runs (y-axis) as a function of time (x-axis) for 50 random grids. (a) comparison of our
RMP to the synchronous (SMP), asynchronous (AMP), and TRP (TRMP) variants of the max-product algorithm for 7 × 7 grids with
C = 7. (b) same as (a) for larger 9 × 9 grids. (c) comparison of GBP and our RGBP method for 20 × 20 grids with C = 7.

putational biology. Yanover andWeiss (2003) show that in-
ferring structure via energy minimization can be posed as
an inference problem in a graphical model. The network
for each protein is an independent inference task with a
unique structure and parameterization, containing between
hundreds and thousands of variables of cardinalities 2–81,
and is highly irregular. We applied the different methods to
all networks (from www.cs.huji.ac.il/c̃heny/proteinsMRF.html).
Our implementation of ABP did not converge on 6 protein
networks even when allowed to run for 30minutes (we note
that this is far fewer than the number of networks reported
not to converge by Yanover and Weiss (2003)). In contrast,
our RBP algorithm converged on all networks. In partic-
ular, it took an average 2 1

2
minutes (with a maximum of

4 minutes) to converge on those networks for which ABP
did not converge. In all these models, both the synchronous
SBP variant and TRP did not converge on many more net-
works than even ABP, again demonstrating the importance
of an informed message schedule.

6 Discussion and Future Work
In this work we addressed the task of message schedul-
ing of propagation methods for approximate inference. We
showed that any reasonable asynchronous algorithm con-
verges under similar conditions to that of synchronous
propagation and proved that the convergence rate of a
round-robin asynchronous algorithm is at least as good
as that of its synchronous counterpart. Motivated by this
analysis, we then presented an extremely simple and effi-
cient message scheduling approach that minimizes an up-
per bound on the distance of the current messages from the
fixed point. We demonstrated that our algorithm is signif-
icantly superior to state-of-the-art methods on a variety of
challenging synthetic and real-life problems.

Interestingly, our choice of message schedule had a sig-
nificant effect not only on the rate of convergence but also
on the convergence success. While this phenomenon is not
typically observed in the field of decoding (see for example
Kfir and Kanter (2003)), it is consistent with the observa-

tions made byWainwright et al. (2002). We conjecture that
when using more oblivious update schemes (including both
synchronous and asynchronous), contradictory signals are
obtained from different parts of the network, causing the
oscillations commonly observed in practice. In contrast,
RBP transmits information in a more “purposeful”way, po-
tentially propagating it to other parts of the network before
they have the opportunity to transmit a contradictory signal
that causes oscillations.

Propagation methods that are guaranteed to converge
have been proposed by Yuille (2001) and Welling and Teh
(2001). These methods are fairly complex to implement;
they also provide limited improvements over BP in terms of
accuracy, and no improvement in convergence rate. While
our methods have no convergence guarantees for general
graphs, they are easy to implement, and appear to converge
on almost all but very hard synthetic problems. Further-
more, our method converges much more quickly than stan-
dard BP or state-of-the-art TRP.

A number of sequential message schedules have been
proposed for message decoding using belief propagation;
these schedules have been shown to converge faster than
synchronous updates. Some works, notably that of Wang
et al. (2005), have formally analyzed convergence rates
for different update schemes for low-density parity-check
codes, under certain idealized assumptions, showing, for
example, that a simple asynchronous propagation approach
is twice as fast as the fully synchronous variant. Both the
algorithms proposed in this literature and the methods used
in the analysis are highly specialized to coding networks,
and it is not clear how they can be applied to general infer-
ence problems outside of the field of decoding.

Our approach defines a whole family of algorithms and
can be applied to practically any message propagation al-
gorithm. We demonstrated that, in addition to improving
BP, our method is effective in improving the performance
of the max-product algorithm as well as that of generalized
belief propagation. Importantly, our approach can in fact be
applied to a wide variety of methods that iteratively apply a
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Summary	  
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algorithms	  to	  run	  in	  a	  parallel	  seYng?	  
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A	  Graph	  with	  data	  associated	  with	  every	  vertex	  and	  edge.	  

:Data	  
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Update	  Func=ons	  are	  operaBons	  which	  are	  applied	  on	  a	  vertex	  and	  transform	  the	  data	  in	  
the	  scope	  of	  the	  vertex	  

BP	  Update:	  
	  -‐	  Read	  messages	  on	  adjacent	  	  
	  	  	  edges	  
	  -‐	  Read	  edge	  potenBals	  
	  -‐	  Compute	  a	  new	  belief	  for	  	  
	  	  	  the	  current	  vertex	  	  
	  -‐	  Write	  new	  messages	  on	  edges	  
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Synchronous	  Schedule:	  
	  	  	  Every	  vertex	  updated	  simultaneously	  

Round	  Robin	  Schedule:	  
	  	  Every	  vertex	  updated	  sequenBally	  
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Dynamic	  Schedule	  
Update	  FuncBons	  can	  insert	  new	  tasks	  into	  the	  schedule	  
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FIFO	  Queue	   Wildfire	  BP	  [SelvaBci	  et	  al.]	  

Priority	  Queue	   Residual	  BP	  [Elidan	  et	  al.]	  
	  

Splash	  Schedule	   Splash	  BP	  [Gonzalez	  et	  al.]	  
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Constant: 
Total # Samples 

Constant:  
Temperature 
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" Accumulate	  performs	  an	  aggregaBon	  over	  verBces	  
" Apply	  makes	  a	  final	  modificaBon	  to	  the	  accumulated	  data	  
" Example:	  Compute	  the	  average	  of	  all	  the	  verBces	  



Shared	  Data	  Table	  (SDT)	  
•  Global	  constant	  parameters	  
•  Global	  computaBon	  (Sync	  Opera=on)	  
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Constant: 
Total # Samples 

Sync: Sample 
Statistics 

Sync: Loglikelihood Constant:  
Temperature 



Safety	  
and	  

Consistency	  
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Write-‐Write	  Race	  
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Write-‐Write	  Race	  	  
If	  adjacent	  update	  funcBons	  write	  simultaneously	  

Lek	  update	  writes:	   Right	  update	  writes:	  Final	  Value	  



Race	  CondiBons	  +	  Deadlocks	  
•  Just	  one	  of	  the	  many	  possible	  races	  
•  Race-‐free	  code	  is	  extremely	  difficult	  to	  write	  
	  

34	  

GraphLab	  design	  ensures	  	  
race-‐free	  operaBon	  



Scope	  Rules	  
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Guaranteed	  safety	  for	  all	  update	  funcBons	  



Full	  Consistency	  
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Only	  allow	  update	  funcBons	  two	  verBces	  apart	  to	  be	  run	  in	  parallel	  
Reduced	  opportuniBes	  for	  parallelism	  



Obtaining	  More	  Parallelism	  
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Not	  all	  update	  funcBons	  will	  modify	  the	  enBre	  scope!	  

Belief	  Propaga=on:	  Only	  uses	  edge	  data	  
Gibbs	  Sampling:	  Only	  needs	  to	  read	  adjacent	  verBces	  
	  



Edge	  Consistency	  
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Obtaining	  More	  Parallelism	  
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“Map”	  opera=ons.	  Feature	  extracBon	  on	  vertex	  data	  



Vertex	  Consistency	  
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SequenBal	  Consistency	  
GraphLab	  guarantees	  sequen=al	  consistency	  

41	  

For	  every	  parallel	  execu=on,	  there	  exists	  a	  sequen=al	  execu=on	  of	  update	  funcBons	  
which	  will	  produce	  the	  same	  result.	  	  

CPU 1 

CPU 2 

CPU 1 

Parallel	  

SequenBal	  

Bme	  



GraphLab	  
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Data	  Graph	  
Shared	  Data	  Table	  

Scheduling	  

Update	  FuncBons	  and	  Scopes	  



DISTRIBUTED	  GRAPHLAB	  
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DistribuBng	  GraphLab	  
•  NOT	  SHARED-‐NOTHING	  (unlike	  MapReduce	  /	  Pregel)	  	  

–  Need	  to	  have	  distributed	  shared	  memory	  	  

•  No	  change	  to	  the	  update	  step	  

•  Need	  to	  to	  distributed	  scheduling	  

•  Need	  to	  ensure	  distributed	  consistency	  

•  Need	  to	  ensure	  fault	  tolerance	  
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Distributed	  Graph	  

45	  

ParBBon	  the	  graph	  across	  mulBple	  machines.	  



Distributed	  Graph	  
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•  Ghost	  verBces	  maintain	  adjacency	  structure	  and	  replicate	  
remote	  data.	  

“ghost”	  verBces	  



Distributed	  Graph	  
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•  Cut	  efficiently	  using	  HPC	  Graph	  parBBoning	  tools	  
(ParMeBs	  /	  Scotch	  /	  …)	  

“ghost”	  verBces	  



Pagerank(scope){	  
	  	  //	  Update	  the	  current	  vertex	  data	  
	  
	  
	  
	  
	  
	  
	  	  //	  Reschedule	  Neighbors	  if	  needed	  
	  	  if	  vertex.PageRank	  changes	  then	  	  
	  	  	  	  reschedule_all_neighbors;	  	  
}	  

vertex.PageRank = α
ForEach inPage: 

vertex.PageRank += (1−α)× inPage.PageRank

Update	  FuncBons	  
User-‐defined	  program:	  applied	  to	  a	  
vertex	  and	  transforms	  data	  in	  scope	  of	  vertex	  
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Distributed	  Scheduling	  

e 

i h 

b a 

f g 

k j 

d c 

a 

h 

f 

g 

j 

c b 

i 

Each	  machine	  maintains	  a	  schedule	  over	  the	  verBces	  it	  owns.	  

49	  Distributed Consensus used to identify completion 



SoluBon	  1	  

Graph	  Coloring	  

Distributed	  
Consistency	  

SoluBon	  2	  

Distributed	  Locking	  



Edge	  Consistency	  via	  Graph	  Coloring	  

VerBces	  of	  the	  same	  color	  are	  all	  at	  least	  one	  vertex	  apart.	  
Therefore,	  All	  verBces	  of	  the	  same	  color	  can	  be	  run	  in	  parallel!	  
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ChromaBc	  Distributed	  Engine	  
Ti
m
e	  

Execute tasks  
on all vertices of  

color 0 

Execute tasks  
on all vertices of  

color 0 

Ghost Synchronization Completion + Barrier 

Execute tasks  
on all vertices of  

color 1 

Execute tasks  
on all vertices of  

color 1 

Ghost Synchronization Completion + Barrier 
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Problems	  
•  Require	  a	  graph	  coloring	  to	  be	  available.	  
	  
	  

•  Frequent	  Barriers	  make	  it	  extremely	  inefficient	  for	  highly	  
dynamic	  systems	  where	  only	  a	  small	  number	  of	  verBces	  are	  
acBve	  in	  each	  round.	  
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SoluBon	  1	  

Graph	  Coloring	  

Distributed	  
Consistency	  

SoluBon	  2	  

Distributed	  Locking	  



Distributed	  Locking	  
Edge	  Consistency	  can	  be	  guaranteed	  through	  locking.	  

:	  RW	  Lock	  
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Consistency	  Through	  Locking	  
Acquire	  write-‐lock	  on	  center	  vertex,	  read-‐lock	  on	  adjacent.	  
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" Solution 
" Pipelining 

CPU Machine 1 

Machine 2 

A C 

B D 

Consistency	  Through	  Locking	  
Multicore Setting 

•  PThread	  RW-‐Locks	  

Distributed Setting 

•  Distributed	  Locks	  

" Challenges 
" Latency 

A C 

B D 

A C 

B D 

A 
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No	  Pipelining	  

lock scope 1 

Process request 1 

scope	  1	  acquired 
update_funcBon	  1 
release	  scope	  1 

Process release 1 

Ti
m
e	  
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Pipelining	  /	  Latency	  Hiding	  
Hide	  latency	  using	  pipelining	  

lock scope 1 

Process request 1 

scope	  1	  acquired 

update_funcBon	  1 
release	  scope	  1 

Process release 1 

lock scope 2 

Ti
m
e	   lock scope 3 Process request 2 

Process request 3 
scope	  2	  acquired 
scope	  3	  acquired 

update_funcBon	  2 
release	  scope	  2 59	  



Checkpoints	  for	  Fault	  Tolerance	  

1:	  Stop	  the	  world	  
2:	  Write	  state	  to	  disk	  



Snapshot	  Performance	  
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No Snapshot 

Snapshot	  

One	  slow	  
machine	  

Because	  we	  have	  to	  stop	  the	  world,	  	  
One	  slow	  machine	  slows	  everything	  down!	  

Snapshot	  =me	  

Slow	  machine	  



Bexer	  CheckpoinBng	  
•  Based	  on	  [Chandy,	  Lamport	  ‘85]	  
•  Edge	  consistent	  update	  funcBon	  
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Figure 3: (a) Plots the runtime of the Distributed Locking En-
gine on a synthetic loopy belief propagation problem varying
the number of machines with pipeline length = 10, 000. (b)
Plots the runtime of the Distributed Locking Engine on the
same synthetic problem on 16 machines (128 CPUs), varying
the pipeline length. Increasing pipeline length improves perfor-
mance with diminishing returns.

Algorithm 5: Snapshot Update on vertex v

if v was already snapshotted then
Quit

Save Dv // Save current vertex

foreach u 2 N[v] do // Loop over neighbors

if u was not snapshotted then
Save data on edge Du$v

Schedule u for a Snapshot Update

Mark v as snapshotted

4.3 Fault Tolerance
We introduce fault tolerance to the distributed GraphLab frame-

work using a distributed checkpoint mechanism. In the event of a
failure, the system is recovered from the last checkpoint. We evalu-
ate two strategies to construct distributed snapshots: a synchronous
method that suspends all computation while the snapshot is con-
structed, and an asynchronous method that incrementally constructs
a snapshot without suspending execution.

Synchronous snapshots are constructed by suspending execution
of update functions, flushing all communication channels, and then
saving all modified data since the last snapshot. Changes are written
to journal files in a distributed file-system and can be used to restart
the execution at any previous snapshot.

Unfortunately, synchronous snapshots expose the GraphLab en-
gine to the same inefficiencies of synchronous computation (Sec. 2)
that GraphLab is trying to address. Therefore we designed a fully
asynchronous alternative based on the Chandy-Lamport [6] snap-
shot. Using the GraphLab abstraction we designed and implemented
a variant of the Chandy-Lamport snapshot specifically tailored to
the GraphLab data-graph and execution model. The resulting algo-
rithm (Alg. 5) is expressed as an update function and guarantees a
consistent snapshot under the following conditions:

• Edge Consistency is used on all update functions,
• Schedule completes before the scope is unlocked,
• the Snapshot Update is prioritized over other update functions,

which are satisfied with minimal changes to the GraphLab engine.
The proof of correctness follows naturally from the original proof in
[6] with the machines and channels replaced by vertices and edges
and messages corresponding to scope modifications.

Both the synchronous and asynchronous snapshots are initiated
at fixed intervals. The choice of interval must balance the cost of
constructing the checkpoint with the computation lost since the last
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(b) Snapshot with Delay

Figure 4: (a) The number of vertices updated vs. time elapsed
for 10 iterations comparing asynchronous and synchronous
snapshots. Synchronous snapshots (completed in 109 seconds)
have the characteristic “flatline” while asynchronous snapshots
(completed in 104 seconds) allow computation to proceed. (b)
Same setup as in (a) but with a single machine fault lasting 15
seconds. As a result of the 15 second delay the asynchronous
snapshot incurs only a 3 second penalty while the synchronous
snapshot incurs a 16 second penalty.

checkpoint in the event of a failure. Young et al. [37] derived a
first-order approximation to the optimal checkpoint interval:

TInterval =
p

2TcheckpointTMTBF (3)

where Tcheckpoint is the time it takes to complete the checkpoint and
TMTBF is the mean time between failures for the cluster. For instance,
using a cluster of 64 machines, a per machine MTBF of 1 year, and
a checkpoint time of 2 min leads to optimal checkpoint intervals of
3 hrs. Therefore, for the deployments considered in our experiments,
even taking pessimistic assumptions for TMTBF, leads to checkpoint
intervals that far exceed the runtime of our experiments and in fact
also exceed the Hadoop experiment runtimes. This brings into
question the emphasis on strong fault tolerance in Hadoop. Better
performance can be obtained by balancing fault tolerance costs
against that of a job restart.

Evaluation: We evaluate the performance of the snapshotting
algorithms on the same synthetic mesh problem described in the
previous section, running on 16 machines (128 processors). We
configure the implementation to issue exactly one snapshot in the
middle of the second iteration. In Fig. 4(a) we plot the number of up-
dates completed against time elapsed. The effect of the synchronous
snapshot and the asynchronous snapshot can be clearly observed:
synchronous snapshots stops execution, while the asynchronous
snapshot only slows down execution.

The benefits of asynchronous snapshots become more apparent in
the multi-tenancy setting where variation in system performance
exacerbate the cost of synchronous operations. We simulate this on
Amazon EC2 by halting one of the processes for 15 seconds after
snapshot begins. In figures Fig. 4(b) we again plot the number of
updates completed against time elapsed and we observe that the
asynchronous snapshot is minimally affected by the simulated fail-
ure (adding only 3 seconds to the runtime), while the synchronous
snapshot experiences a full 15 second increase in runtime.

4.4 System Design
In Fig. 5(a), we provide a high-level overview of a GraphLab

system. The user begins by constructing the atom graph representa-
tion on a Distributed File System (DFS). If hashed partitioning is
used, the construction process is Map-Reduceable where a map is
performed over each vertex and edge, and each reducer accumulates
an atom file. The atom journal format allows future changes to the
graph to be appended without reprocessing all the data.



Async.	  Snapshot	  Performance	  
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No Snapshot 

Snapshot	  

One	  slow	  
machine	  

No	  penalty	  incurred	  by	  the	  slow	  machine!	  



Summary	  
•  Asynchronous	  serial	  graph	  algorithms	  can	  converge	  faster	  than	  

synchronous	  parallel	  graph	  algorithms	  	  

•  GraphLab	  provides	  high	  level	  abstracBons	  for	  wriBng	  
asynchronous	  graph	  algorithms	  
–  Takes	  care	  of	  consistency	  and	  scheduling	  

•  Distributed	  GraphLab	  	  
–  Graph	  processing	  using	  color-‐steps	  
–  Consistency	  ensured	  via	  pipelined	  distributed	  locking	  
–  Fault	  tolerance	  via	  fine	  grained	  checkpoinBng	  
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