Clustering

CompSci 590.03 Instructor: Ashwin Machanavajjhala

Clustering Problem

Given a set of points,
 with a notion of distance between points,

group the points into some number of clusters,

so that members of a cluster are in some sense as close to each other as possible.

Example: Clustering News Articles

- Consider some vocabulary V = {v1, v2, ..., vk}.
- Each news article is a vector (x1, x2, ..., xk),
 where xi = 1 iff vi appears in the article
- Documents with similar sets of words correspond to similar topics

Example: Clustering movies (Collaborative Filtering)

- Represent each movie by the set of users who rated it.
- Each movie is a vector (x1, x2, ..., xk), where xi is the rating provided by user i.
- Similar movies have similar ratings from the same sets of users.

Example: Protein Sequences

- Objects are sequences of {C, A, T, G}
- Distance between two sequences is the *edit distance*, or the minimum number of inserts and deletes needed to change one sequence to another.
- Clusters correspond to proteins with similar sequences.

Lecture 17: 590.02 Spring 13

Outline

- Distance measures
- Clustering algorithms
 - K-Means Clustering
 - Hierarchical Clustering
- Scaling up Clustering Algorithms
 - Canopy Clustering

Distance Measures

- Each clustering problem is based on some notion of distance between objects or points
 - Also called similarity
- Euclidean Distance
 - Based on a set of m real valued dimensions
 - Euclidean distance is based on the locations of the points in the m-dimensional space
 - There is a notion of average of two points
- Non-Euclidean Distance
 - Not based on the location of points
 - Notion of average may not be defined

Distance Metric

 A distance function is a metric if it satisfies the following conditions

- $d(x,y) \ge 0$
- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $d(x,y) \le d(x,z) + d(z,y)$ triangle inequality

• Lp norm:

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i} (x_i - y_i)^p\right)^{\frac{1}{p}}$$

- L2 norm = Distance in euclidean space
- L1 norm = Manhattan distance
- L ∞ norm = maximum $(x_i y_i)$

Jaccard Distance:

Let A and B be two sets.

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Cosine Similarity:

$$cosine(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}$$

Levenshtein distance a.k.a. Edit distance

Minimum number of inserts and deletes of characters needed to turn one string into another.

Outline

- Distance measures
- Clustering algorithms
 - K-Means Clustering
 - Hierarchical Clustering
- Scaling up Clustering Algorithms
 - Canopy Clustering

K-Means

- A very popular point assignment based clustering algorithm
- Goal: Partition a set of points into k clusters, such that points within a cluster are closer to each other than point from different clusters.
- Distance measure is typically Euclidean
 - K-medians if distance measure does not permit an average

K-Means

Input:

A set of points in *m* dimensions {x1, x2, ..., xn} The desired number of clusters K

Output:

A mapping from points to clusters C: $\{1, ..., m\} \rightarrow \{1, ..., K\}$

K-Means

Input:

A set of points in *m* dimensions {x1, x2, ..., xn} The desired number of clusters K

Output:

A mapping from points to clusters C: $\{1, ..., m\} \rightarrow \{1, ..., K\}$

Algorithm:

- Start with an arbitrary C
- Repeat
 - Compute the centroid of each cluster
 - Reassign each point to the closest centroid
- Until C converges

Example

Initialize Clusters

Compute Centroids

19

Reassign Clusters

Recompute Centroids

Reassign Clusters

Recompute Centroids – Done!

Questions

What is a good value for K?

Does K-means always terminate?

How should we choose initial cluster centers?

Determining K

- Small k: Many points have large distances to centroid
- Large k: No significant improvement in average diameter (max distance between any two points in a cluster)

K-means as an optimization problem

- Let ENCODE be a function mapping points in the dataset to {1...k}
- Let DECODE be a function mapping {1...k} to a point

$$min \sum_{i} (x_i - DECODE(ENCODE(x_i)))^2$$

Alternately, if we write DECODE[j] = cj,
 we need to find an ENCODE function and k points c1, ..., ck

$$min \sum_{i} (x_i - c_{ENCODE(x_i)})^2$$

K-means terminates

- Consider the objective function.
- There are finitely many possible clusterings (Kⁿ)
- Each time we reassign a point to a nearer cluster, the objective decreases.
- Every time we recompute the centroids, the objective either stays the same or decreases.
- Therefore the algorithm has to terminate.

Local optima

 Depending on initialization K-means can converge to different local optima.

28

Initial Configuration

- Starting with a random assignment ... cluster centroids will be close to the centroid of the entire dataset
- Farthest first heuristic
 - Choose first centroid to be a random point
 - Choose next centroid to be the point farthest away from the current set of centroids.

Lecture 17: 590.02 Spring 13

Outline

- Distance measures
- Clustering algorithms
 - K-Means Clustering
 - Hierarchical Clustering
- Scaling up Clustering Algorithms
 - Canopy Clustering

Hierarchical Clustering

- Start with all points in their own clusters
- Repeat
 - Merge two clusters that are closest to each other
- Until (stopping condition)

Example

Distance metric: Euclidean distance

Distance between Clusters

Different measures for distance between two clusters.

- Single Linkage
 d(C1, C2) = min x in C1 min y in C2 d(x,y)
- Average Linkage
 d(C1, C2) = average x in C1, y in C2 { d(x,y) }
- Complete Linkage
 d(C1, C2) = max x in C1 max y in C2 d(x,y)

Stopping Condition

Dendogram

Stopping condition can depend on:

- Number of Clusters
- Distance between merging clusters
- Size of the largest cluster

Complexity

- Need to identify the closest clusters at each step
- Hence, need $\Omega(n^2)$ computation just to compute all the pairwise distances.
- We will see ways to speed up clustering next.

Outline

- Distance measures
- Clustering algorithms
 - K-Means Clustering
 - Hierarchical Clustering
- Scaling up Clustering Algorithms
 - Canopy Clustering

Scaling up Clustering

- Efficient clustering is possible when:
 - Small dimensionality
 - Small number of clusters
 - Moderate size data

How to scale clustering when none of these hold?

Intuition behind Canopy Clustering

- Do not computing all O(n²) pairwise distances.
- For every point x, identify c(x) a small subset of points in the dataset which are most likely to be in the same cluster as x.

Canopy Clustering [McCallum et al KDD'00]

Input: Mentions M, d(x,y), a distance metric, thresholds $T_1 > T_2$

Algorithm:

- 1. Pick a random element *x* from *M*
- 2. Create new canopy C_x using mentions y s.t. $d(x,y) < T_1$
- 3. Delete all mentions y from Ms.t. $d(x,y) < T_2$ (from consideration in this algorithm)
- 4. Return to Step 1 if *M* is not empty.

Summary

- Clustering algorithms have a number of applications
- K-means and hierarchical clustering are popular techniques
- Canopy clustering helps scale clustering techniques

