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Clustering Problem

* Given a set of points,
with a notion of distance between points,

group the points into some number of clusters,

so that members of a cluster are in some sense as close to each
other as possible.
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Example: Clustering News Articles

Consider some vocabulary V = {v1, v2, ..., vk}.

Each news article is a vector (x1, x2, ..., xk),
where xi = 1 iff vi appears in the article

Documents with similar sets of words correspond to similar topics
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Example: Clustering movies
(Collaborative Filtering)

Represent each movie by the set of users who rated it.

Each movie is a vector (x1, x2, ..., xk), where xi is the rating
provided by user i.

Similar movies have similar ratings from the same sets of users.
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Example: Protein Sequences

Objects are sequences of {C, A, T, G}

Distance between two sequences is the edit distance, or the
minimum number of inserts and deletes needed to change one
sequence to another.

Clusters correspond to proteins with similar sequences.
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Outline

* Distance measures

* Clustering algorithms
— K-Means Clustering
— Hierarchical Clustering

* Scaling up Clustering Algorithms
— Canopy Clustering
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Distance Measures

* Each clustering problem is based on some notion of distance

between objects or points
— Also called similarity

* Euclidean Distance
— Based on a set of m real valued dimensions
— Euclidean distance is based on the locations of the points in the
m-dimensional space
— There is a notion of average of two points

* Non-Euclidean Distance
— Not based on the location of points

— Notion of average may not be defined D
: uke
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Distance Metric

A distance function is a metric if it satisfies the following
conditions

d(x,y) =20
d(x,y)=0iffx=y

d(x,y) = d(y,x)
d(x,y) < d(x,z) + d(z,y) triangle inequality

Lecture 17 : 590.02 Spring 13 8 Duke

UNIVYERSITY



Examples of Distance Metrics

Lp norm:

1

ay) = () =)

L2 norm = Distance in euclidean space
L1 norm = Manhattan distance

Lee norm = maximum (x, —y)
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Examples of Distance Metrics

e Jaccard Distance:

Let A and B be two sets.

AN B|
AU B|

J(A,B) =
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Examples of Distance Metrics

e Cosine Similarity:

i XY

ERRE

cosine(x,y) =
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Examples of Distance Metrics

e Levenshtein distance a.k.a. Edit distance

Minimum number of inserts and deletes of characters
needed to turn one string into another.
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Outline

e Distance measures

* Clustering algorithms
— K-Means Clustering
— Hierarchical Clustering

e Scaling up Clustering Algorithms
— Canopy Clustering
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K-Means

A very popular point assignment based clustering algorithm

Goal: Partition a set of points into k clusters, such that points

within a cluster are closer to each other than point from different
clusters.

Distance measure is typically Euclidean
— K-medians if distance measure does not permit an average
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K-Means

* |nput:
A set of points in m dimensions {x1, x2, ..., xn}
The desired number of clusters K

* Qutput:
A mapping from points to clusters C: {1, ..., m} =2 {1, ..., K}
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K-Means

* I|nput:
A set of points in m dimensions {x1, x2, ..., xn}
The desired number of clusters K

* Qutput:
A mapping from points to clusters C: {1, ..., m} 2 {1, ..., K}

Algorithm:
e Start with an arbitrary C
* Repeat

— Compute the centroid of each cluster
— Reassign each point to the closest centroid

* Until C converges
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Example
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Initialize Clusters
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Compute Centroids
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Reassigh Clusters
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Recompute Centroids
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Reassigh Clusters
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Recompute Centroids — Done!
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Questions

* What is a good value for K?
 Does K-means always terminate?

* How should we choose initial cluster centers?
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Determining K

T

Average
Diameter Correct value of k

5

Number of Clusters —»

* Small k: Many points have large distances to centroid

e Large k: No significant improvement in average diameter (max
distance between any two points in a cluster)
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K-means as an optimization problem

Let ENCODE be a function mapping points in the dataset to {1...k}
Let DECODE be a function mapping {1...k} to a point

min Z(xi — DECODE(ENCODE (x;)))?
[

Alternately, if we write DECODE][j] = cj,
we need to find an ENCODE function and k points c1, ..., ck

_ 2
min E (Xi - CENCODE(xi))
i

Duke
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K-means terminates

Consider the objective function.
There are finitely many possible clusterings (K")

Each time we reassign a point to a nearer cluster, the objective
decreases.

Every time we recompute the centroids, the objective either stays
the same or decreases.

Therefore the algorithm has to terminate.
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Local optima

* Depending on initialization K-means can converge to different
local optima.
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Initial Configuration

e Starting with a random assignment ... cluster centroids will be
close to the centroid of the entire dataset

e Farthest first heuristic

— Choose first centroid to be a random point

— Choose next centroid to be the point farthest away from the current set of
centroids.
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Outline

e Distance measures

* Clustering algorithms
— K-Means Clustering
— Hierarchical Clustering

e Scaling up Clustering Algorithms
— Canopy Clustering
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Hierarchical Clustering

e Start with all points in their own clusters

* Repeat
— Merge two clusters that are closest to each other
e Until (stopping condition)
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Example

Distance metric: Euclidean distance

e
c‘ -
b‘ ® .f
Py d
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Distance between Clusters

Different measures for distance between two clusters.

Single Linkage
d(C1, C2) = min ,;, g Min i, o, dixy)

Average Linkage
d(C1, C2) = average , .. C1yin o 1d(xy) }

Complete Linkage
d(C1, C2) = max ,, c; Max, i, d(x,y)
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Stopping Condition
* Dendogram

Stopping condition can depend on:

* Number of Clusters

e Distance between merging clusters
e Size of the largest cluster
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Complexity

Need to identify the closest clusters at each step

Hence, need Q(n?) computation just to compute all the pairwise
distances.

We will see ways to speed up clustering next.
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Outline

e Distance measures

* Clustering algorithms
— K-Means Clustering
— Hierarchical Clustering

e Scaling up Clustering Algorithms
— Canopy Clustering
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Scaling up Clustering

e Efficient clustering is possible when:
— Small dimensionality
— Small number of clusters
— Moderate size data

 How to scale clustering when none of these hold?
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Intuition behind Canopy Clustering

e Do not computing all O(n?) pairwise distances.

* For every point x, identify c(x) a small subset of points in the
dataset which are most likely to be in the same cluster as x.
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Canopy Clustering mccallum et al kbp’oo]

Input: Mentions M,
d(x,y), a distance metric,
thresholds 7, > T,

Algorithm:

1. Pick a random element x from M

2. Create new canopy C, using
mentionsy s.t. d(x,y) < T,

3. Delete all mentions y from M |
s.t. d(x,y) < T, (from consideration in this algorithm) "

4. Returnto Step 1if Mis not empty.
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Summary

e Clustering algorithms have a number of applications
 K-means and hierarchical clustering are popular techniques

e Canopy clustering helps scale clustering techniques
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