Enforcing constraints using Correlation Clustering

CompSci 590.03
Instructor: Ashwin Machanavajjhala
Summary of Hash-based Blocking

• Complex boolean functions can be built to optimize recall using a
training set of matches and non-matches

• Locality sensitive hashing functions can strongly distinguish pairs
that are close from pairs that are far.

• AND and OR construction help amplify the distinguishing
capability of locality sensitive functions.
Outline

• Definition of Blocking

• Hash-based Blocking
 – Boolean functions over attributes
 – minHash: Locality Sensitive Hashing

• Neighborhood-based Blocking
 – Merge/Purge
 – Canopy Clustering
Blocking Algorithms 2

• Pairwise Similarity/Neighborhood based blocking
 – Nearby nodes according to a similarity metric are clustered together
 – Results in non-disjoint canopies.

• Techniques
 – Sorted Neighborhood Approach [Hernandez et al SIGMOD’95]
 – Canopy Clustering [McCallum et al KDD’00]
Sorted Neighborhood [Hernandez et al SIGMOD’95]

- Compute a **Key** for each record.
- **Sort** the records based on the key.
- **Merge**: Check whether a record matches with \((w-1)\) previous records.
 - Implementation?
- Perform multiple passes with different keys
Canopy Clustering [McCallum et al KDD’00]

Input: Mentions M, $d(x,y)$, a distance metric, thresholds $T_1 > T_2$

Algorithm:
1. Pick a random element x from M
2. Create new canopy C_x using mentions y s.t. $d(x,y) < T_1$
3. Delete all mentions y from M s.t. $d(x,y) < T_2$ (from consideration in this algorithm)
4. Return to Step 1 if M is not empty
Summary of Blocking

• $O(|R|^2)$ pairwise computations can be prohibitive.
 – Blocking eliminates comparisons on a large fraction of non-matches.

• Hash-based Blocking:
 – Construct (one or more) hash keys from features
 – Records not matching on any key are not compared.

• Neighborhood based Blocking:
 – Form overlapping canopies of records based on similarity.
 – Only compare records within a cluster.
This Class

• Enforcing Constraints in ER
 – Exclusivity: Bipartite Matching
 – Transitivity: Correlation Clustering
Constraints

• **Transitivity:**
 If x and y match, y and z match, then x and z must match
 – Useful in deduplication

• **Exclusivity:**
 If x matches with y, then z cannot match with y
 – Useful in record linkage (matches across two datasets)
 – Each dataset does not have any duplicates.

• **Relational Constraints:**
 If x and y match, then z and w should match
 – If movies are the same, then directors must be the same
 – (We will see in next class)
<table>
<thead>
<tr>
<th>Constraint Types</th>
<th>Hard Constraint</th>
<th>Soft Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Evidence</td>
<td>Transitivity: $x = y & y = z \Rightarrow x = z$</td>
<td>Note that some of the constraints may be relational and require joins</td>
</tr>
<tr>
<td></td>
<td>Relational: If x, y match then z, w are more likely to match</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relational: If two venues don’t match then their papers don’t match</td>
<td></td>
</tr>
<tr>
<td>Negative Evidence</td>
<td>Exclusivity: x and y must refer to distinct entities</td>
<td>Soft Exclusivity: x and y are very likely different elements</td>
</tr>
<tr>
<td></td>
<td>Relational: If x, y don’t match then z, w cannot match</td>
<td>Constraints can be recursive, e.g., if two authors have matching co-authors, then they match</td>
</tr>
</tbody>
</table>

May be **directional** or **bidirectional**
Match Dependencies

When matching decisions depend on other matching decisions (in other words, matching decisions are not made independently for each pair), we refer to the approach as **collective**
Algorithms for Enforcing Constraints

• Record linkage - propagation through exclusivity
 – Weighted k-partite matching

• Deduplication - propagation through transitivity
 – Correlation clustering

• Collective - propagation through relational constraints
 – Similarity propagation
 • Dependency graphs, Collective Relational Clustering
 – Probabilistic approaches
 • LDA, CRFs, Markov Logic Networks, Probabilistic Relational Models,
 – Hybrid approaches
 • Dedupalog
Record Linkage: Exclusivity Constraints

• Matching between (almost) deduplicated databases.
• Each record in one database matches at most one record in another database.
• Pairwise ER may match a record in one database with more than one record in second database
Weighted K-Partite Matching

- Edges between pairs of records from different databases
- Edge weights
 - Pairwise match score
 - Log odds of matching
Weighted K-Partite Matching

• Find a matching (each record matches at most one other record from other database) that maximize the sum of weights.
• General problem is NP-hard (3D matching)
• Successive bipartite matching is typically used. [Gupta & Sarawagi, VLDB ’09]
Deduplication => Transitivity

- Often pairwise ER algorithm output “inconsistent” results
 - \((x, y) \in M_{pred}, (y,z) \in M_{pred}, \) but \((x,z) \notin M_{pred}\)

- Idea: Correct this by adding additional matches using transitive closure

- In certain cases, this is a bad idea.
 - Graphs resulting from pairwise ER have diameter > 20
 - [Rastogi et al ICDE’13]

- Need clustering solutions that deal with this problem directly by reasoning about records jointly.
Clustering-based ER

• Resolution decisions are not made independently for each pair of records

• Based on variety of clustering algorithms, but
 – Number of clusters unknown a priori
 – Many, many small (possibly singleton) clusters

• Often take a pair-wise similarity graph as input
Correlation Clustering

• A set of records R

• Pairwise similarities:
 – Cost of placing two records in different clusters (w+)
 – Cost of placing two records in the same cluster (w-)

• Example:
 – If x = y, w+ = 1, w- = 0
 – If x not equal to y, w+ = 0, w- = 1

• Goal: Cluster the records such that sum of w+ for records in different clusters + sum of w- for records within clusters is minimized.
Integer Linear Programming

• $x_{ij} \in \{0,1\}$, $x_{ij} = 1$ if records i and j are in the same cluster.
• $w^+_{ij} \in [0,1]$, cost of placing i and j in different clusters
• $w^-_{ij} \in [0,1]$, cost of clustering i and j together

$$\min \sum_{i,j: i < j} x_{ij} w^-_{ij} + (1 - x_{ij}) w^+_{ij}$$

s. t. $\forall i, j, k \ x_{ij} + x_{jk} + x_{ik} \neq 2$

Transitive closure
Correlation Clustering

\[
\min \sum_{i,j:i<j} x_{ij} w_{ij}^- + (1-x_{ij})w_{ij}^+
\]

s.t. \(\forall i, j, k \ x_{ij} + x_{jk} + x_{ik} \neq 2 \)

- Cluster records such that total penalty is minimized
 - Solid edges contribute \(w_{xy}^- \) to the objective
 - Dashed edges contribute \(w_{xy}^+ \) to the objective

- Cost based on pairwise similarities
 \[\{p_{ij} \mid (i,j) \in R \times R \} \]
 - Additive: \(w_{ij}^+ = p_{ij} \) and \(w_{ij}^- = (1-p_{ij}) \)
 - Logarithmic: \(w_{ij}^+ = \log(p_{ij}) \) and \(w_{ij}^- = \log(1-p_{ij}) \)
Correlations Clustering

• Do not need to specify the number of clusters up front

• Respects the pairwise similarities (from the previous lectures) between objects during the clustering
 – Can encode hard constraints:
 e.g., Terminator 1 and Terminator 2 are different movies
 – Can encode soft constraints:
 Obama and Barak Obama are very likely the same person
Correlation Clustering

• Solving the ILP is NP-hard [Ailon et al 2008 JACM]

• A number of heuristics [Elsner et al 2009 ILP-NLP]
 – Greedy BEST/FIRST/VOTE algorithms
 – Greedy PIVOT algorithm (3 and 5-approximation)
 – Local Search
PIVOT Algorithm

• Pick a random \((pivot)\) record \(p\).
• New cluster \(= \{x \mid w_{px}^+ > 0\}\)

\[
\begin{align*}
\pi &= \{1,2,3,4\} \quad C = \{\{1,2,3,4\}\} \\
\pi &= \{2,4,1,3\} \quad C = \{\{1,2\}, \{4\}, \{3\}\} \\
\pi &= \{3,2,4,1\} \quad C = \{\{1,3\}, \{2\}, \{4\}\}
\end{align*}
\]

When weights are 0/1, \(E(\text{cost(PIVOT)}) < 3 \text{ cost(OPT)}\)
For general \(w_{xy}^+ + w_{xy}^- = 1\), \(E(\text{cost(PIVOT)}) < 5 \text{ cost(OPT)}\)
Proof of Approximation

\((w^+ \text{ and } w^- \text{ are in } \{0, 1\})\)

- COPT = cost of optimal solution
- CPIV = cost of the PIVOT algorithm

- **+ Edge:** \(w^+_{ij} = 1, w^-_{ij} = 0\)
 - Incur a cost of 1 if \(i\) and \(j\) are in different clusters

- **- Edge:** \(w^+_{ij} = 0, w^-_{ij} = 1\)
 - Incur a cost of 1 if \(i\) and \(j\) are in the same cluster
Proof of Approximation

- When does PIVOT incur a cost?

- Pick i as PIVOT, - edge kj is in the same cluster
- Pick j as PIVOT, + edge ik is not in the same cluster
Proof of Approximation

- $t = (i,j,k)$ is a bad triangle if it has 2 + edges and 1 – edge.
- Let T be the set of bad triangles

- For every bad triangle, let A_t be the event: “all i, j, k were considered in the same step when the first among them was a pivot”

- Triangle t is charged a unit cost exactly when A_t occurs

- Triangle t can be charged at most once
 - A_t’s are mutually exclusive.
Proof of Approximation

• Triangle \(t \) is charged a unit cost exactly when \(A_t \) occurs

• Triangle \(t \) can be charged at most once
 – \(A_t \)'s are mutually exclusive.

\[
E(C^{PIV}) = \sum_{t \in T} P(A_t) = \sum_{t \in T} p_t
\]
Proof of Approximation

• What is the cost of OPT?

• Suppose we had n edge disjoint bad triangles
 – \(\text{COPT} = n \)

• We can say something similar when bad triangles are not disjoint
 – Suppose \(\beta_t \) is a non-negative weight associated with each bad triangle \(t \) such that:
 \[
 \forall e, \sum_{t: e \in t} \beta_t \leq 1
 \]
 – Then
 \[
 C^{OPT} \geq \sum_{t \in T} \beta_t
 \]
Proof of Approximation

• We can show

\[\forall e, \sum_{t: e \in t} p_t \leq 3 \]

\[\Rightarrow C^{OPT} \geq \frac{1}{3} \sum_{t \in T} p_t = \frac{C^{PIV}}{3} \]
Proof of Approximation

- Proof of \(\forall e, \sum_{t: e \in t} p_t \leq 3 \)

- Suppose \(e \) is an edge shared by a set of bad triangles \(t_1, t_2 \ldots \)
- \(P(e \text{ is charged cost of 1 due to triangle } t_i) = \frac{p_{t_i}}{3} \)
- All At’s are mutually exclusive

Thus
\[
P(e \text{ is charged}) = \sum_{t: e \in t} P(e \text{ is charged due to } t) = \sum_{t: e \in t} \frac{p_t}{3} \leq 1
\]
Other Greedy Heuristics

Step 1: Permute the nodes according a random π

Step 2: Assign record x to the cluster that maximizes $\textit{Quality}$

Start a new cluster if $\textit{Quality} < 0$

Quality:

- **BEST**: Cluster containing the closest match $\max_{y \in C} w_{xy}^+$
 - [Ng et al 2002 ACL]

- **FIRST**: Cluster contains the most recent vertex y with $w_{xy}^+ > 0$
 - [Soon et al 2001 CL]

- **VOTE**: Assign to cluster that minimizes objective function.
 - [Elsner et al 08 ACL]

Practical Note:

- Run the algorithm for many random permutations, and pick the clustering with best objective value (better than average run)
Local Search

BOEM Algorithm [Gionis et al 2007 TKDD]
• Start with an initial clustering (e.g. output of greedy)
• Remove one random element from a cluster
• Make the Best One Element Move (BOEM)
 – Move it to another cluster or Create a new cluster.
Summary

• Pairwise matching is insufficient for ER when constraints need to be handled

• Transitivity, Exclusivity and Relational constraints are typical.

• Exclusivity
 – Record Linkage: Weighted bipartite matching

• Transitivity
 – Deduplication: Correlation clustering
 – PIVOT greedy algorithm with 3 approximation