Collective Entity Resolution in Relational Data

CompSci 590.03
Instructor: Ashwin Machanavajjhala
Recap: Constraints

• **Transitivity:**
 If x and y match, y and z match, then x and z must match
 – Useful in deduplication

• **Exclusivity:**
 If x matches with y, then z cannot match with y
 – Useful in record linkage (matches across two datasets)
 – Each dataset does not have any duplicates.

• **Relational Constraints:**
 If x and y match, then z and w should match
 – If movies are the same, then directors must be the same
 – (We will see in next class)
Recap: Constraint Types

<table>
<thead>
<tr>
<th>Positive Evidence</th>
<th>Hard Constraint</th>
<th>Soft Constraint</th>
</tr>
</thead>
</table>
| Transitivity: $x=y \& y=z \Rightarrow x=z$ | Relational: If x, y match then z, w are more likely to match
If two venues match, then their papers are more likely to match | |

<table>
<thead>
<tr>
<th>Negative Evidence</th>
<th>Exclusivity: x and y must refer to distinct entities</th>
<th>Soft Exclusivity: x and y are very likely different elements</th>
</tr>
</thead>
</table>
| | Relational: If x, y don’t match then z, w cannot match
If two venues don’t match, then their papers don’t match | |
When matching decisions depend on other matching decisions (in other words, matching decisions are not made independently for each pair), we refer to the approach as *collective*
This Class

• Collective Entity Resolution for Relational Data
 – Problem Statement
 – Motivating Example
 – Similarity functions for Linked Data
 – Relational Clustering
Abstract Problem Statement

Real World

Digital World

Duke UNIVERSITY
Deduplication - Problem Statement
Relationships are crucial
This Class

- Collective Entity Resolution for Relational Data
 - Problem Statement
 - Motivating Example
 - Similarity functions for Linked Data
 - Relational Clustering
InfoVis Co-Author Network Fragment

before

after
Relational Constraints

Very similar names. Added evidence from shared co-authors
Relational Constraints

Very similar names but no shared collaborators
Relational Constraints

Co-authors are typically distinct
Collective Entity Resolution

One resolution provides evidence for another => joint resolution
This Class

• Collective Entity Resolution for Relational Data
 – Problem Statement
 – Motivating Example
 – Similarity functions for Linked Data
 – Relational Clustering
Relational Features

• There are a variety of ways of improving ER performance when data is richer than a single table/entity type

• One of the simplest is to use additional information, to enrich model with relational features that will provide richer context for matching
Examples of relational features

• Value of edge or neighboring attribute (1-1)

• Aggregates (1-many)
 – Mode (sum, min, max) of related attribute

• Set similarity measures to compare nodes based on set of related nodes, e.g., compare neighborhoods
 – Overlap
 – Jaccard coefficient
 – Average similarity between set members
Preferential Attachment Score
[Liben-Nowell & Kleinberg, JASIST07]

• Based on studies, e.g. [Newman, PRL01], showing that people with a larger number of existing relations are more likely to initiate new ones.

\[s(a, b) = |N_a| \cdot |N_b| \]

Set of a’s neighbors
Common Neighbors

• Two nodes are likely to be connected in a graph if they share a large number of common neighbors.

\[s(a, b) = N(a) \cap N(b) \]

Can be any kind of shared attributes or relationships to shared entities
Adamic/Adar Measure

- Two nodes are more similar if they share more items that are overall less frequent

\[s(a, b) = \sum_{i \in N(a) \cap N(b)} \frac{1}{\log(\text{deg}(i))} \]

Can be any kind of shared attributes or relationships to shared entities

Overall frequency in the data

[Adamic & Adar, SN03]
Katz Score

- Two objects are similar if they are connected by shorter paths

\[
s(a, b) = \sum_{l=1}^{\infty} \beta^l \cdot |\text{paths}^{(l)}(a, b)|
\]

- Decay factor between 0 and 1

- Since expensive to compute, often use approximate Katz, assuming some max path length of k
Personalized Page Rank

• Stationary distribution of a random walk:
 – With probability (1-c), follow a random outgoing edge
 – With probability c, jump to the target node ‘a’
SimRank \([\text{Jeh \& Widom, KDD02}]

- “Two objects are similar if they are related to similar objects”

- Defined as the unique solution to:

\[
s(a, b) = \frac{C}{|I(a)||I(b)|} \sum_{i=1}^{||I(a)||} \sum_{j=1}^{||I(b)||} s(I_i(a), I_j(b))
\]

- Computed by iterating to convergence
- Initialization to \(s(a, b) = 1\) if \(a=b\) and 0 otherwise
Intuition behind Simrank

- $\text{sim}(a,b)$ measures how soon two (reverse) random walks starting from a and b meet at the same node.

- Works best for bipartite graphs (having two types of entities)
Intuition behind Simrank

Expected Distance

\[d(u, v) = \sum_{t: u \sim v} P[t] l(t) \]

- \(d(u, v) = 0 \) if \(u = v \)
- \(t \) : tour (path with cycles) starting at \(u \) and ending at \(v \)
- \(t = [w_1, w_2, \ldots, w_k] \)

\[P[t] = \prod_{i=1}^{k-1} \frac{1}{|O(w_i)|} \]
Intuition behind Simrank

Expected Meeting Distance

• expected number of steps taken for 2 random walks starting from a and b to meet.

• Expected meeting distance in G is equivalent to expected distance in G^2.
 – Consider a graph $G^2 = (V \times V, E^2)$
 – There is an edge between (a,b) and (c,d) in E^2, if there are edges (a,c) and (b,d) in E

\[
m(a, b) = \sum_{t: (a, b) \sim (x, x)} P[t]l(t)
\]
Intuition behind Simrank

Expected Meeting Distance

\[m(u,v) = \infty \]

\[m(u,v) = \infty \quad m(u,w) = \infty \quad m(v,w) = 1 \]

\[m(u,v) = 3 \]
Intuition behind Simrank

Expected-f Meeting Distance

- Map distance \(l(t) \) to \(f(l(t)) \), where \(f(z) = c^z, 0 < c < 1 \)

\[
s'(a, b) = \sum_{t : (a, b) \rightarrow (x, x)} P[t]c^{l(t)} \]

- Large distances become small similarities
- Small distances become large similarities
Intuition behind Simrank

- $s(a,b)$ is equivalent to $s'(a,b)$ where in and out edges are reversed.

\[s'(a, b) = \sum_{t: (a, b) \Rightarrow (x, x)} P[t] c^{l(t)} \]

\[= \sum_{c \in O(a)} \sum_{d \in O(b)} \sum_{t': (c, d) \Rightarrow (x, x)} \frac{P[t'] c^{l(t')+1}}{|O(a)||O(b)|} \]

\[= \frac{c}{|O(a)||O(b)|} \sum_{c \in O(a)} \sum_{d \in O(b)} s'(c, d) \]
Many of the aforementioned similarity functions are also used for link prediction in social networks.

[Liben-Nowell, Kleinberg 2003]
This Class

• Collective Entity Resolution for Relational Data
 – Problem Statement
 – Motivating Example
 – Similarity functions for Linked Data
 – Relational Clustering
Relational Clustering

Blocking:
• Identify similar pairs of records.

Bootstrapping:
• Create some high confidence clusters of duplicate amongst blocked pairs.

Iteration:
• Merge two closest clusters if similarity > threshold
• Update the similarities between neighboring clusters based on the fact that the cluster has been merged.
Relational Clustering using an Example

Relational Clustering

P1
C. Walshaw M. Cross M. G. Everett S. Johnson

P2
C. Walshaw M. Cross M. Everett S. Johnson K. McManus

P4
Alfred V. Aho Jefferey D. Ullman Stephen C. Johnson

P5
A. Aho J. Ullman S. Johnson

Duke UNIVERSITY
Relational Clustering
Relational Clustering
Relational Clustering
Relational Clustering

1. Find similar references using ‘blocking’
2. Bootstrap clusters using attributes and relations
3. Compute similarities for cluster pairs and insert into priority queue
4. Repeat until priority queue is empty
5. Find ‘closest’ cluster pair
6. Stop if similarity below threshold
7. Merge to create new cluster
8. Update similarity for ‘related’ clusters

- $O(n \cdot k \log n)$ algorithm w/ efficient implementation
Relational Clustering

- Never split clusters, only merge them
 - Allows efficient implementation
 - Errors early on in the process can lead to bad clustering/resolution

- Collective Resolution
 - Two objects that are not very similar can become similar if their neighbors are clustered together.
Summary

• Many similarity metrics for relational data
 – Common Neighbors
 – Adamic/Adar
 – Katz
 – Personalized Page Rank
 – Simrank

• Need collective techniques for entity resolution on linked data
 – Relational Clustering

• Next Class
 – Collective Resolution using Markov Logic
 – Scaling Collective Entity Resolution