Regular Expressions

Method to represent strings in a language

- union (or)
- concatenation (AND) (can omit)
- star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]

Definition: Given \(\Sigma\),

1. \(\emptyset, \lambda, a \in \Sigma\) are R.E.
2. If \(r\) and \(s\) are R.E. then
 - \(r + s\) is R.E.
 - \(rs\) is R.E.
 - \((r)\) is a R.E.
 - \(r^*\) is R.E.
3. \(r\) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r) = \text{language denoted by R.E. } r\).

1. \(\emptyset, \{\lambda\}, \{a\}\) are L denoted by a R.E.
2. if \(r\) and \(s\) are R.E. then
 - \(L(r + s) = L(r) \cup L(s)\)
 - \(L(rs) = L(r) \circ L(s)\)
 - \(L((r)) = L(r)\)
 - \(L((r)^*) = (L(r)^*)\)

Precedence Rules

- highest
- \(\circ\)
- \(+\)

Example:

\(ab^* + c =\)
Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}$.

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than } 3 \text{ a's and must end in } ab\}$.

3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $L(M) = L(r)$.

- **Proof:**
 0
 $\{\lambda\}$
 $\{a\}$
 Suppose r and s are R.E.
 1. $r+s$
 2. $r \cdot s$
 3. r^*

Example

$ab^* + c$

Theorem Let L be regular. Then \exists R.E. r s.t. $L = L(r)$.

Proof Idea: remove states sucessively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

- **Proof:**
 L is regular
 $\Rightarrow \exists$
 1. Assume M has one final state and $q_0 \notin F$
 2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with
 Let r_{ij} stand for label of the edge from q_i to q_j
 3. If the GTG has only two states, then it has the following form:
 In this case the regular expression is:
 $r = (r_{ii}^* r_{ij} r_{jj}^*)^* r_{ii}^* r_{ij} r_{jj}^*$
 4. If the GTG has three states then it must have the following form:
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule

r_{op} replaced with $r_{op} + r_{ok}r_{kk}^r r_{kp}$

with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:

<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^r r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^r r_{ki}$</td>
</tr>
</tbody>
</table>

After these replacements, remove state q_k and its edges.
\[r + r = r \]
\[s + r^*s = \]
\[r + \emptyset = \]
\[r\emptyset = \]
\[\emptyset^* = \]
\[r\lambda = \]
\[(\lambda + r)^* = \]
\[(\lambda + r)r^* = \]
and similar rules.

Example:

\[
\begin{array}{c}
q_0 \quad q_1 \\
\downarrow \quad \downarrow \\
a \quad a \\
\end{array}
\]

Section 3.3

Grammar \(G = (V, T, S, P) \)

- \(V \) variables (nonterminals)
- \(T \) terminals
- \(S \) start symbol
- \(P \) productions

Right-linear grammar:

All productions of form
\[A \rightarrow xB \]
\[A \rightarrow x \]
where \(A, B \in V, x \in T^* \)

Left-linear grammar:

All productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A, B \in V, x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P) \]
\[P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]

Example 2:

\[G = (\{S,B\}, \{a,b\}, S, P) \]
\[P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]

Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = \text{L}(G) \).

Outline of proof:

\((\iff)\) Given a regular grammar \(G \)
\[\text{Construct NFA } M \]
\[\text{Show } L(G) = L(M) \]

\((\text{⇒})\) Given a regular language
\[\exists \text{ DFA } M \text{ s.t. } L = \text{L}(M) \]
\[\text{Construct reg. grammar } G \]
\[\text{Show } L(G) = L(M) \]

Proof of Theorem:

\((\iff)\) Given a regular grammar \(G \)
\[G = (V, T, S, P) \]
\[V = \{V_0, V_1, \ldots, V_y\} \]
\[T = \{v_0, v_1, \ldots, v_z\} \]
\[S = V_0 \]
Assume \(G \) is right-linear
\[\text{(see book for left-linear case).} \]
\[\text{Construct NFA } M \text{ s.t. } L(G) = \text{L}(M) \]
\[\text{If } w \in \text{L}(G), w = v_1 v_2 \ldots v_k \]

\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]
\[V_0 \text{ is the start (initial) state} \]
\[\text{For each production, } V_i \rightarrow aV_j, \]

5
For each production, \(V_i \to a \),

Show \(L(G) = L(M) \)

Thus, given R.G. G,

\(L(G) \) is regular

\(\iff \) Given a regular language \(L \)

\(\exists \) DFA \(M \) s.t. \(L = L(M) \)

\(M = (Q, \Sigma, \delta, q_0, F) \)

\(Q = \{ q_0, q_1, \ldots, q_n \} \)

\(\Sigma = \{ a_1, a_2, \ldots, a_m \} \)

Construct R.G. \(G \) s.t. \(L(G) = L(M) \)

\(G = (Q, \Sigma, q_0, P) \)

if \(\delta(q_i, a_j) = q_k \) then

if \(q_k \in F \) then

Show \(w \in L(M) \iff w \in L(G) \)

Thus, \(L(G) = L(M) \).

QED.

Example

\(G = (\{S, B\}, \{a, b\}, S, P), P = \)

\(S \to aB \mid bS \mid \lambda \)

\(B \to aS \mid bB \)

Example:

\[\text{Diagram of DFA} \]

\[\text{Diagram of Grammar} \]