Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)
 ◦ concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]
Definition Given Σ,

1. $\emptyset, \lambda, a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{\lambda\}, \{a\} \) are \(L \) denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then
 (a) \(L(r+s) = L(r) \cup L(s) \)
 (b) \(L(rs) = L(r) \circ L(s) \)
 (c) \(L((r)) = L(r) \)
 (d) \(L((r)^*) = (L(r)^*) \)
Precedence Rules

* highest

Example:

\[ab^* + c = \]
Examples:

1. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has an odd number of a’s followed by an even number of b’s$\}$.

2. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has no more than 3 a’s and must end in ab\}$.

3. Regular expression for positive and negative integers
Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $L(M) = L(r)$.

Proof:

\emptyset

$\{\lambda\}$

$\{a\}$

Suppose r and s are R.E.

1. $r+s$

2. $r\circ s$

3. r^*
Example

\[ab^* + c \]
Theorem Let L be regular. Then \(\exists \) R.E. \(r \) s.t. \(L = L(r) \).

Proof Idea: remove states successively until two states left

• Proof:
 L is regular
 \(\Rightarrow \exists \)

1. Assume M has one final state and \(q_0 \notin F \)

2. Convert to a generalized transition graph (GTG), all possible edges are present. If no edge, label with
 Let \(r_{ij} \) stand for label of the edge from \(q_i \) to \(q_j \)
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}^*r_{ij}r_{jj}^*r_{ji})^*r_{ii}^*r_{ij}r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*, r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*, r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*, r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*, r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

\[
\begin{align*}
 r + r &= r \\
 s + r^* s &= \\
 r + \emptyset &= \\
 r\emptyset &= \\
 \emptyset^* &= \\
 r\lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)r^* &= \\
\end{align*}
\]

and similar rules.
Example:
Grammar $G=(V,T,S,P)$

V variables (nonterminals)

T terminals

S start symbol

P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$

$A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A, B \in V \), \(x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L=L(G) \).

Outline of proof:

\(\leftarrow \Rightarrow \) Given a regular grammar \(G \)
 Construct NFA \(M \)
 Show \(L(G)=L(M) \)

\(\Rightarrow \rightarrow \) Given a regular language
 \(\exists \) DFA \(M \) s.t. \(L=L(M) \)
 Construct reg. grammar \(G \)
 Show \(L(G) = L(M) \)
Proof of Theorem:

\[(\iff)\text{ Given a regular grammar } G \]
\[G=(V,T,S,P)\]
\[V=\{V_0, V_1, \ldots, V_y\}\]
\[T=\{v_o, v_1, \ldots, v_z\}\]
\[S=V_0\]

Assume G is right-linear

(see book for left-linear case).

Construct NFA M s.t. \(L(G)=L(M)\)

If \(w\in L(G), w=v_1v_2\ldots v_k\)
\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]

\(V_0 \) is the start (initial) state

For each production, \(V_i \rightarrow aV_j \),

For each production, \(V_i \rightarrow a \),

Show \(L(G) = L(M) \)

Thus, given R.G. \(G \),

\(L(G) \) is regular
(⇒) Given a regular language L
\exists DFA M s.t. $L=L(M)$
$M=(Q, \Sigma, \delta, q_0, F)$
$Q=\{q_0, q_1, \ldots, q_n\}$
$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$
$G=(Q, \Sigma, q_0, P)$
if $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$
Thus, $L(G) = L(M)$.
QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example: