Discrete Probability II

COMPSCI 230 — Discrete Math

April 6, 2017
Outline

1. Joint and Marginal Probability Functions
2. Independent Outcomes and Events
3. Conditional Probabilities and Independence
Two Biased Coins

\[\mathcal{S} = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\} \]

\[\mathcal{E} = \emptyset, \{(H, H), (H, T), (T, H), (T, T)\}, \{(H, H), (H, T), (T, H), (T, T)\}, \]

\(|\mathcal{S}| = 4 \Rightarrow |\mathcal{E}| = 2^4 = 16 \) \(\binom{4}{k} \) events with \(k \) outcomes

- *Most general* probability function:

\[
\begin{align*}
P((H, H)) &= p_{HH} & P((H, T)) &= p_{HT} \\
P((T, H)) &= p_{TH} & P((T, T)) &= p_{TT}
\end{align*}
\]

with \(p_i \geq 0 \) and \(p_{HH} + p_{HT} + p_{TH} + p_{TT} = 1 \)
Joint Probability Function

<table>
<thead>
<tr>
<th></th>
<th>H_2</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>p_{HH}</td>
<td>p_{HT}</td>
</tr>
<tr>
<td>T_1</td>
<td>p_{TH}</td>
<td>p_{TT}</td>
</tr>
<tr>
<td></td>
<td>p_{H_2}</td>
<td>p_{T_2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H_2</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>T_1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- $p_{HH} = P((H, H))$
- Events $\{(H, H)\}$ and $\{(H, T)\}$ are mutually exclusive
- So $p_{H_1} = \text{prob}(\{(H, \ast)\}) = \text{prob}(\{(H, H)\} \cup \{(H, T)\}) = \text{prob}(\{(H, H), (H, T)\}) = p_{HH} + p_{HT}$
- *Marginal* distribution for coin 1 on right margin
- Marginal distribution for coin 2 on bottom margin
- Adding marginals yields 1 either way
Marginal Probability Functions

• \(p_{H_1} = \text{prob}(\{(H, \star)\}) = \text{prob}(\{(H, H)\} \cup \{(H, T)\}) = \text{prob}(\{(H, H), (H, T)\}) = p_{HH} + p_{HT} \)

• More generally, a compound experiment produces outcome \((X, Y)\) in sample space \(\mathbb{S} = \mathbb{S}_X \times \mathbb{S}_Y\)

• \(P(X) = \sum_{Y \in \mathbb{S}_Y} P(X, Y) \)

• \(P(Y) = \sum_{X \in \mathbb{S}_X} P(X, Y) \) (marginalization)

• Sum all rows (or all columns) of a joint probability function to obtain the marginal probability function

• \(P(X), P(Y) \) defined on \(\mathbb{S}_X\) and \(\mathbb{S}_Y\)

• Notice the overloading of the symbol \(P \)

• This abuse of notation is common in probability theory because of its convenience
Clicker Test

What is the volume of a pizza with thickness \(a\) and radius \(z\)?

<table>
<thead>
<tr>
<th>Pick one ((\pi \approx 3.14))</th>
<th>(Not Graded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: (z^2a)</td>
<td></td>
</tr>
<tr>
<td>B: (2\pi z^2)</td>
<td></td>
</tr>
<tr>
<td>C: (2\pi a^2z)</td>
<td></td>
</tr>
<tr>
<td>D: (a^2z)</td>
<td></td>
</tr>
<tr>
<td>E: (\pi \cdot z \cdot z \cdot a)</td>
<td></td>
</tr>
</tbody>
</table>
Conditional Probability

\[\text{prob}(A) = 1/3, \text{prob}(B) = 1/2, \text{prob}(A \cap B) = 1/5 \]

Hint:

\[\frac{1}{x} = \frac{y}{x} \]

What is \(\text{prob}(A|B) \)? (Graded)

A: 1/6
B: 2/5
C: 3/5
D: 5/6
E: Not enough information
Joint and Marginal Probability Functions

Independence

For a fair die, $P(O_i) = 1/6$ for all $i = 1, \ldots, 6$.
$A = \{1, 2, 3\}, B = \{3, 4\}$

Are A and B independent? (Graded)

A: Yes
B: No
C: Depends on whether A, B are considered mutually exclusive
D: Depends on whether the outcome is 3
E: Not enough information
Exclusive Events

For a fair die, \(P(O_i) = 1/6 \) for all \(i = 1, \ldots, 6 \).
\(A = \{1, 2, 3\}, \; B = \{3, 4\} \)

Are \(A \) and \(B \) mutually exclusive? (Graded)

A: Yes
B: No
C: Depends on whether the die is Bernoulli
D: Depends on whether the outcome is 3
E: Not enough information
Independent Outcomes

- Two independent, biased coins

 \[
 P((H, H)) = p_1 p_2 \quad P((H, T)) = p_1 q_2 \\
 P((T, H)) = q_1 p_2 \quad P((T, T)) = q_1 q_2
 \]

 with \(p_1 + q_1 = p_2 + q_2 = 1 \) and \(p_i, q_i \geq 0 \)

- "Independent outcomes" = probabilities factor:

 \[
 P((H, H)) = P(H)P(H) \quad P((H, T)) = P(H)P(T) \\
 P((T, H)) = P(T)P(H) \quad P((T, T)) = P(T)P(T)
 \]
Joint Probability Function for **Independent** Outcomes

<table>
<thead>
<tr>
<th></th>
<th>H_2</th>
<th>T_2</th>
<th>p_{H_1}</th>
<th>H_1</th>
<th>T_2</th>
<th>p_{H_1}</th>
<th>H_2</th>
<th>T_2</th>
<th>p_{H_1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>$p_{H_1}p_{H_2}$</td>
<td>$p_{H_1}p_{T_2}$</td>
<td>p_{H_1}</td>
<td>H_1</td>
<td>T_2</td>
<td>p_{H_1}</td>
<td>H_2</td>
<td>T_2</td>
<td>p_{H_1}</td>
</tr>
<tr>
<td>T_1</td>
<td>$p_{T_1}p_{H_2}$</td>
<td>$p_{T_1}p_{T_2}$</td>
<td>p_{T_1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_{H_2}</td>
<td>p_{T_2}</td>
<td>p_S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fill marginals first
- Joint probabilities are products of the marginals
- More generally, two events (as opposed to outcomes) A and B are independent iff

\[
prob(A \cap B) = prob(A) \cdot prob(B)
\]
Exclusivity and Independence

Two mutually exclusive events are ...

Pick one

A: never independent
B: sometimes independent
C: always independent
Exclusivity and Independence

• $A, B \in \mathcal{E}$ mutually exclusive: $A \cap B = \emptyset$
 (A set-theoretical statement)

• A, B independent: $\text{prob}(A \cap B) = \text{prob}(A) \text{prob}(B)$
 (A probabilistic statement)

• Two mutually exclusive events are independent only if at least one of them has zero probability:

 $$A \cap B = \emptyset \Rightarrow \text{prob}(A \cap B) = 0$$

 ... and if A and B are independent

 $$0 = \text{prob}(A \cap B) = \text{prob}(A) \text{prob}(B)$$

 ... so that either $\text{prob}(A) = 0$ or $\text{prob}(B) = 0$

• Two mutually exclusive events with nonzero probabilities are always dependent. Prove by contradiction:

• Assume $\text{prob}(A) > 0$, $\text{prob}(B) > 0$ and $A \cap B = \emptyset$ and

 $$\text{prob}(A \cap B) = \text{prob}(A) \text{prob}(B)$$

 Then, $\text{prob}(A \cap B) > 0$, but $\text{prob}(A \cap B) = \text{prob}(\emptyset) = 0$
Independent Events

• Two events A and B are independent iff

$$\text{prob}(A \cap B) = \text{prob}(A) \text{prob}(B)$$

• Example: Rolling a fair die, $p(O_i) = 1/6$ for $i = 1, \ldots, 6$
• $\text{prob}(A) = \text{prob}({1, 3, 5}) = 1/2$, $\text{prob}(B) = \text{prob}({2, 5}) = 1/3$
• $\text{prob}(A \cap B) = \text{prob}({5}) = 1/6 = \text{prob}(A) \text{prob}(B)$
• A, B are independent
• $\text{prob}(C) = \text{prob}({2, 3, 5}) = 1/2$
• $\text{prob}(A \cap C) = \text{prob}({3, 5}) = 1/3 \neq \text{prob}(A) \text{prob}(C) = 1/4$
• A, C are dependent
• Easy condition to verify
• However, the definition seems arbitrary
• Seems to have to do uniquely with numbers
• To understand what it means, we introduce the notion of conditional probability
Conditional Probabilities

• Let $A, B \subseteq \mathbb{S}$ with $\text{prob}(B) > 0$

\[
\text{prob}(A|B) \triangleq \frac{\text{prob}(A \cap B)}{\text{prob}(B)}
\]

• $\text{prob}(A)$ is the fraction of the probability mass of A relative to that of \mathbb{S}

• $\text{prob}(A|B)$ is the fraction of the probability mass of $A \cap B$ relative to that of B

• $\text{prob}(A|B)$ is the probability of A if the sample space shrinks from \mathbb{S} to B
Conditional Probabilities

- \(A, B \subseteq \mathbb{S} \) with \(\text{prob}(B) > 0 \)

\[
\text{prob}(A|B) \triangleq \frac{\text{prob}(A \cap B)}{\text{prob}(B)}
\]

- Think of \(\text{prob}(A) \) as a shorthand for \(\text{prob}(A|\mathbb{S}) \)

\[
\text{prob}(A|\mathbb{S}) = \frac{\text{prob}(A \cap \mathbb{S})}{\text{prob}(\mathbb{S})} = \frac{\text{prob}(A)}{1} = \text{prob}(A)
\]
Conditional Probabilities and Independence

Conditioning and Independence

- **A** and **B** independent: \(\text{prob}(A \cap B) = \text{prob}(A) \text{prob}(B) \)
- Assume \(\text{prob}(A) > 0 \) and \(\text{prob}(B) > 0 \)
 (otherwise \(A, B \) are trivially independent)

\[
\text{prob}(A|B) = \frac{\text{prob}(A \cap B)}{\text{prob}(B)} = \frac{\text{prob}(A) \text{prob}(B)}{\text{prob}(B)} = \text{prob}(A)
\]

\[
\text{prob}(B|A) = \frac{\text{prob}(B \cap A)}{\text{prob}(A)} = \frac{\text{prob}(B) \text{prob}(A)}{\text{prob}(A)} = \text{prob}(B)
\]

- So if \(\text{prob}(A), \text{prob}(B) > 0 \) then
 \[
 \text{prob}(A \cap B) = \text{prob}(A) \text{prob}(B)
 \]
 \[\Leftrightarrow \quad \text{prob}(A|B) = \text{prob}(A)\]
 \[\Leftrightarrow \quad \text{prob}(B|A) = \text{prob}(B)\]

- **A** and **B** are independent iff knowledge of one does not change the probability of the other
Example: Roll of a Die Case I

- I am about to roll a fair die in a separate room
- You bet on an odd outcome, $A = \{1, 3, 5\}$
- Your uncertainty is distributed over the entire sample space
- $\text{prob}(A) = 1/2$
- After the roll, I tell you that the outcome was either 2 or 5
- Your sample space has now shrunk to $B = \{2, 5\}$
- The only outcomes of B that let you win are in $A \cap B = \{5\}$
- You need to compare the probability of $A \cap B$ with the total mass in B
- So your probability of winning after what I told you is

$$\text{prob}(A|B) = \frac{\text{prob}(A \cap B)}{\text{prob}(B)} = \frac{\text{prob}(\{5\})}{\text{prob}(\{2, 5\})} = \frac{1/6}{2/6} = \frac{1}{2}$$

- $\text{prob}(A|\emptyset)$ and $\text{prob}(A|B)$ are the same
- Knowing B does not change the probability of A
- A, B are independent
Example: Roll of a Die Case II

- Same situation, you still bet on an odd outcome, \(A = \{1, 3, 5\} \)
- Initially, \(\text{prob}(A) = \frac{1}{2} \)
- After the roll, I tell you that the outcome was either 2 or 3 or 5
- **Your sample space has now shrunk to** \(C = \{2, 3, 5\} \)
- The only outcomes of \(C \) that let you win are in \(A \cap C = \{3, 5\} \)
- You need to compare the probability of \(A \cap C \) with the total mass in \(C \)
- So your probability of winning after what I told you is

\[
\text{prob}(A|C) = \frac{\text{prob}(A \cap C)}{\text{prob}(C)} = \frac{\text{prob}\{3, 5\}}{\text{prob}\{2, 3, 5\}} = \frac{2}{3/6} = \frac{2}{3}
\]

- \(\text{prob}(A|\mathcal{S}) \) and \(\text{prob}(A|C) \) are **not** the same
- Knowing \(C \) changes the probability of \(A \) (up or down)
- \(A, C \) are **dependent**
Interpretation of Conditional (In)dependence

• $\text{prob}(A|\mathcal{S}) = 1/2$ but $\text{prob}(A|C) = 2/3$
• Knowledge of C has restricted the sample space from \mathcal{S} to C
• This restriction changed the probability of A occurring
• A depends on C
• A did not depend on B
• If A depends on C then C depends on A
• Proof: $\text{prob}(A \cap C) = \text{prob}(A) \text{prob}(C)$ is symmetric in A, C. Done.
Two Loaded Tetrahedral Dice

Roll two loaded tetrahedral dice $n = 1000$ times.

<table>
<thead>
<tr>
<th>n_{XY}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>n_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>63</td>
<td>72</td>
<td>69</td>
<td>272</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>53</td>
<td>72</td>
<td>61</td>
<td>253</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>55</td>
<td>50</td>
<td>65</td>
<td>225</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>60</td>
<td>66</td>
<td>55</td>
<td>250</td>
</tr>
<tr>
<td>n_X</td>
<td>259</td>
<td>231</td>
<td>260</td>
<td>250</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{XY}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>p_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.068</td>
<td>.063</td>
<td>.072</td>
<td>.069</td>
<td>.272</td>
</tr>
<tr>
<td>2</td>
<td>.067</td>
<td>.053</td>
<td>.072</td>
<td>.061</td>
<td>.253</td>
</tr>
<tr>
<td>3</td>
<td>.055</td>
<td>.055</td>
<td>.050</td>
<td>.065</td>
<td>.225</td>
</tr>
<tr>
<td>4</td>
<td>.069</td>
<td>.060</td>
<td>.066</td>
<td>.055</td>
<td>.250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_X</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>p_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>.259</td>
<td>.231</td>
<td>.260</td>
<td>.250</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Probabilities are only coarse estimates because $n = 1000$. Both dice seem loaded. From marginals, X die has low $p_X(2)$ and Y die has low $p_Y(3)$.
Two Loaded Tetrahedral Dice

<table>
<thead>
<tr>
<th>Joint Probability Estimate</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{XY}</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>p_Y</td>
</tr>
<tr>
<td>1</td>
<td>.068</td>
<td>.063</td>
<td>.072</td>
<td>.069</td>
<td>.272</td>
</tr>
<tr>
<td>2</td>
<td>.067</td>
<td>.053</td>
<td>.072</td>
<td>.061</td>
<td>.253</td>
</tr>
<tr>
<td>3</td>
<td>.055</td>
<td>.055</td>
<td>.050</td>
<td>.065</td>
<td>.225</td>
</tr>
<tr>
<td>4</td>
<td>.069</td>
<td>.060</td>
<td>.066</td>
<td>.055</td>
<td>.250</td>
</tr>
</tbody>
</table>

$|p_X|$.259 .231 .260 .250 | 1 |

Are the dice independent? Multiply the marginals.

<table>
<thead>
<tr>
<th>Joint Probability Estimate</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{XY}</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>p_Y</td>
</tr>
<tr>
<td>1</td>
<td>.0704</td>
<td>.0628</td>
<td>.0707</td>
<td>.0680</td>
<td>.272</td>
</tr>
<tr>
<td>2</td>
<td>.0655</td>
<td>.0584</td>
<td>.0658</td>
<td>.0633</td>
<td>.253</td>
</tr>
<tr>
<td>3</td>
<td>.0583</td>
<td>.0520</td>
<td>.0585</td>
<td>.0563</td>
<td>.225</td>
</tr>
<tr>
<td>4</td>
<td>.0648</td>
<td>.0577</td>
<td>.0650</td>
<td>.0625</td>
<td>.250</td>
</tr>
</tbody>
</table>

$|p_X|$.259 .231 .260 .250 | 1 |

Close, but not quite.
Outcomes from two dice seem to be slightly tied to each other. Magnets? Biased roll? Chance?