
COMPSCI 330: Design and Analysis of Algorithms March 10, 2016

Random Processes
Lecturer: Debmalya Panigrahi Scribe: Tianqi Song

1 Overview

We introduce random processes by the following examples: Coupon Collector, Shared Resource Contention
and Balls in Bins.1

2 Preliminary

2.1 Geometric Random Variables

Suppose we have a coin which, when flipped, lands on heads with probability p (otherwise, it lands on tails).
We flip this coin repeatedly until we get a heads. How many flips will we perform, in expectation? Consider
any sequence of flips:

T T T H H T · · · (1)

What is the probability that it takes i trials to see the first head? For that occur, we must fail the first (i−1)
trials, and succeed exactly on the ith. Let X be a random variable equal to the first i with a heads. Since the
trials are independent:

Pr(X = i) = Pr(First H is on trial i) = (1− p)i−1(p) (2)

We call variables distributed in this way (independent trials until success)geometric random variables. We
say that X is drawn from a geometric distribution with parameter p.

X ∼ Geo(p) = Geo(1− p) (3)

Using the definitions, one can show that the expectation of a geometric random variable is:

E[X ] = Σ
∞
i=1i(1− p)i−1 p (4)

We have

E[X ]− (1− p)E[X ] = Σ
∞
i=0(1− p)i p = p

1
p

(5)

Therefore

E[X ] =
1
p

(6)

The expected number of flips before we see a heads is 1/p.
1Some materials are from a note by Roger Zou for this class in Fall 2014 and a note by Allen Xiao for COMPSCI 532 in Fall

2015.

10-1



3 Coupon Collector Problem

3.1 Problem Statement

There are n types of coupons. In each draw, a coupon is picked at random and each type of coupon has the
same probability to be picked. What is the expected number of draws to get all n types of coupons ?

3.2 Analysis

Let Xi be the random variable representing the number of draws to get the ith distinct coupon after we have
got (i−1) distinct coupons. We have Xi follows a geometric distribution and the probability of success for
each trial is:

pi =
n− i+1

n
(7)

The expectation of Xi is:

E[Xi] =
1
pi

(8)

=
n

n− i+1
(9)

Let X be the number of draws to get all n types of coupons. We have:

E[X ] =
n

∑
i=1

E[Xi] (10)

=
n

∑
i=1

n
n− i+1

(11)

= n
(

1
n
+

1
n−1

+ . . .+
1
2
+

1
1

)
(12)

= Θ(n logn) (13)

4 Shared Resource Contention

4.1 Problem Statement

We have n processes P1,P2, ...,Pn that can access a shared resource S. Each process tosses a random coin
with success probability 1

n . If the coin returns true for process Pi, then Pi tries to access the resource. If Pi

is the only process that is trying to access the resource, then Pi accesses the resource. If there is contention,
then no process accesses the resource. The goal is to determine the expected number of rounds required for
all processes to access the resource.

10-2



4.2 Analysis

Let Xi be the number of rounds needed for the ith process to access S, after (i−1) processes have accessed
S. Let pi be the probability that a new process accesses the resource in a round, after (i−1) processes have
accessed S. Then we have:

pi = (n− i+1)
1
n

(
1− 1

n

)n−1

(14)

Note that 1
n

(
1− 1

n

)n−1 is the probability that an i-th process returns true with the rest being false, and
(n− i+1) is the number of possible processes.

Fact 1.

lim
n→∞

(
1− 1

n

)n

= lim
n→∞

(
1− 1

n

)n−1

=
1
e
= Θ(1) (15)

Therefore:

pi =
n− i+1

n
Θ(1) (16)

Xi is a geometric random variable, then we have:

E[Xi] =
1
pi

(17)

=
n

n− i+1
Θ(1) (18)

Again, similar to the coupon collector problem, let X be the number of rounds:

E[X ] =
n

∑
i=1

E[Xi] (19)

= Θ(n logn) (20)

5 Balls in Bins

5.1 Problem Statement

Suppose we have n balls and m bins, and we toss the balls (uniformly at random) into the bins. This is called
a balls and bins process, and is a popular model in practice. For example, hashing algorithms will often use
a balls and bins process for analyzing collisions. Let Xi be a random variable for the number of balls in the
ith bin. We ask:

1. How large should n be before every bin is filled in expectation (E[Xi]≥ 1)?

2. What is E[Xi]?

3. When m = n, what is the maximum load over all the bins? If X = maxi Xi, what is E[X ]?

10-3



5.2 Analysis

(1) is actually a restatement of the coupon collector problem, so the answer is n = Θ(m logm). For (2),
notice that the expectation is symmetric across i.

E[X1] = E[X2] = · · ·= E[Xn] (21)

Now, since we throw n balls,
m

∑
i=1

E[Xi] = n (22)

It follows that:

E[Xi] =
n
m

(23)

Finally, for (3), the probability a fixed bin has more than k balls is at least the probability that, for k of the n
balls, they all landed in this bin. These trials are independent, so we can say:

Pr(Xi ≥ k)≤
(

n
k

)(
1
n

)k

(24)

We can apply an inequality known as Stirling’s approximation to give a tight bound on
(n

k

)
.(n

k

)k
≤
(

n
k

)
≤
(en

k

)k
(25)

This gives us:

Pr(Xi ≥ k)≤
(en

k

)k
(

1
n

)k

=
(e

k

)k
(26)

The definition of X gives us:

Pr(X ≥ k) = Pr(∃i | Xi ≥ k) = Pr

(
n⋃

i=1

(Xi ≥ k)

)
(27)

Applying the union bound:

Pr(X ≥ k)≤
n

∑
i=1

Pr(Xi ≥ k) (28)

≤
n

∑
i=1

(e
k

)k
(29)

= n
(e

k

)k
(30)

We know that X ≤ n. We can divide the outcomes of X into cases where no Xi ≥ k, and when at least one
Xi ≥ k. Taking the expectation of X :

E[X ]≤ k Pr(X < k)+nPr(X ≥ k) (31)

≤ n ·n
(e

k

)k
+ k (32)

10-4



We will choose k in order to remove the first half of the sum. Asymptotically, this will be the same as if we
had tried to optimize for k.

n2
(e

k

)k
≤ 1 (33)

=⇒
(e

k

)k
≤ 1

n2 (34)

=⇒
(

kk

ek

)
≥ n2 (35)

=⇒ kk ∼ poly(n) (36)

=⇒ k logk = O(logn) (37)

How can we solve for k now? It turns out one natural solution to this expression is k = O(logn/ log logn).

k logk =
logn

log logn
· log

(
logn

log logn

)
(38)

=
logn

log logn
· (log logn− log loglogn) (39)

The rightmost term is vanishingly small, so:

k logk = Θ

(
logn

log logn
· log logn

)
(40)

= Θ(logn) (41)

Similar to how logn solves 2k = poly(n), kk = poly(n) is solved by k = O(logn/ log logn). Using that
choice of k:

Pr
(

Xi ≥
e logn

log logn

)
≤
(

log logn
logn

) e logn
log logn

≤ 1
n2 (42)

This makes E[X ]:

E[X ] = n · n
n2 + k = O

(
logn

log logn

)
(43)

In fact, this is tight; there is a lower bound example which matches this. Additionally, notice for X :

Pr
(

X ≥ e logn
log logn

)
≤ 1

n
(44)

When some event fails with probability Ω(1/n), we typically say it succeeds with high probability. Here,
we say that with high probability X = O((logn)/(log logn)). These types of statements are tail bounds, and
provide a formal notion of controlling a distribution. Here, we used a tail bound to obtain a bound on the
expectation. Often, we want to do the reverse: use expectation to obtain a tail bound (“value stays close to
the mean with high probability”).

10-5


