COMPSCI 330: Design and Analysis of Algorithms April 21, 2016

Approximation Algorithms
Lecturer: Debmalya Panigrahi Scribe: Tiangi Song

1 Overview

In this lecture, we introduce approximation algorithms and their analysis in the form of approxi-
mation ratio. We also review a few examples]l]

2 Approximation Algorithms

It is uncertain whether polynomial time algorithms exist for NP-hard problems, but in many cases,
polynomial time algorithms exist which approximate the solution.

Definition 1. Let P be an optimization problem for minimization, with an approzimation algorithm
A. The approximation ratio o of A is:

ALGO()

Q@ =max —————
1ep OPT()

Fach I is an input/instance to P. ALGO(I) is the value A achieves on I, and OPT(I) is the value
of the optimal solution for I. An equivalent form exists for maximization problems:

ALGO(I)

“= 1P OPT()

In both cases, we say that A is an a-approximation algorithm for P.

A natural way to think of this (as we maximize over all possible inputs) is the worst-case
performance of A against optimal. We will often use the abbreviations ALGO and OPT to denote
the worst-case values which form a.

3 2-Approximation for Vertex Cover

A wvertez cover of a graph G = (V, E) is a set of vertices S C V such that every edge has at least
one endpoint in .S. The VERTEX-COVER decision problem asks, given a graph G and parameter k,
whether G admits a vertex cover of size at most k. The optimization problem is to find a vertex
cover of the minimum size. We will provide an approximation algorithm for VERTEX-COVER with
an approximation ratio of 2. Consider a very naive algorithm: while an uncovered edge exists, add
one of its endpoints to the cover. It turns out this algorithm is rather difficult to analyze in terms
of approximation ratio. A small variation gives a very straightforward analysis: instead of adding
one vertex of the uncovered edge, add both.

!Some materials are from a previous note by Allen Xiao.

17-1

’Ut®-—- Wt

Figure 1: The set of v;, w; are the vertices chosen by the approximation algorithm. The optimal
vertex cover must cover all these edges; at least one vertex from each edge must have been used in
OPT as well.

Algorithm 1 Vertex Cover 2-Approximation
1: U+ F
2: S+ 0
3: while U is not empty do
4: Choose any (v,w) € U.
5: Add both v and w to S.
6:
7
8

Remove all edges adjoining v or w from U.
: end while
: return S

Consider the vertices added by this procedure. The vertex pairs added by the algorithm are a
set of disjoint edges, since the algorithm removes adjoining vertices for every vertex it adds. OPT
must cover each of these edges (v;,w;), and must therefore pick at least one endpoint from each
edge. It follows that OPT(G) is at least half the size of |S|, so the approximation ratio for this
algorithm is at most 2.

4 Greedy Approximation for Set Cover

Given a universe of n objects X and a family of subsets S = s1,..., 8, (s; € X) a set cover is a

subfamily T C S such that every object in X is a member of at least one set in 1" (i.e. J e s = X).

Let c(-) be a cost function on the covers, and let the cost of the set cover ¢(T') = > . c(s). The

weighted set cover optimization problem asks for the minimum cost set cover of X using covers S.

As with vertex cover, we will use a simplistic algorithm and prove its approximation ratio. Let

F C X be the set of (remaining) uncovered elements. Each step, we add the set which pays the
least per uncovered element it covers. (5
c(s

ses [sN F|

Intuitively, this choice lowers the average cost of covering an element in the final set cover.

17-2

Algorithm 2 Greedy Set Cover
P+ X
T+ @
: while F' is not empty do

. c(s’
S < argmlnsles ﬁ

1
2
3
4
5: T(—TU{S}
6
7
8

F«+ F\s
. end while
: return T’

Correctness follows from the same argument as the vertex cover analysis: Elements are only
removed from F' (initially X') when they are covered by the set we add to T', and we finish with F'
empty. Therefore all elements of X are covered by some set in T'.

To prove the approximation ratio, consider the state of the algorithm before adding the ith
set. For clarity, let F; be F' on this iteration (elements not yet covered), but let 7" denote the final
output set cover, and T* the optimal set cover. By optimality of T™*:

Z c(s) =¢c(T*) = OPT
seT*
T* covers X, and therefore covers F;:
> |snFj| > |F)
seT™*

We can consider how the sets in T perform on the cost-per-uncovered ratio that is minimized in
the algorithm.

in c(s) < Yo serc(s) < OPT
seT™* |$ﬂFi’ ZSET* |Sﬂﬂ| |Fz|
The second inequality used “the minimum is at most the average”. Now notice that the algorithm

takes a minimum over all subsets S. Since S O T™, the chosen set must have had at least as low a
ratio as the minimum from 7.

. oc(s) < c(s) - OPT
min —— min
seS |SmFi| T oseT* |SﬁFi| - |F,L|

Finally, the cost of T is the sum of costs of its sets. Using the notation above, we can write this
expression as a weighted sum of the minimized ratios, and then apply the above inequality to find

17-3

an upper bound linear in OPT. Let s(9 be the ith set selected.

7|

ALGO =¢(T) = Z c(s) = Z c(s®)

C S(i
= ZS() (|Fi] = |Figal)

7|

OPT
< F F;
= Z ‘F‘ ’ ’ ’ +1D

Analyzing the sum will give us an expression for the approximation ratio. Since each sum term is
OPT/|F;| duplicated (|F;| — |Fj—1|) times, we can replace the denominator terms to get an upper
bound.

OPT OPT OPT
O 0EI = 1Rl = ((Spr e+ S20)
(IFs|—=|Fs51]) times
OPT OopPT OoPT OPT
- (!E +|FZ-|—1+\E\—2+"'+W>
|| =| Fig1]—1 OPT
- Z il =

§=0
Returning to the original sum, we realize this is actually a big descending sum of OPT/(n — j)
terms.
'zT': 'Fi"'zﬂj*l"l OPT \ <OPT L., OPT > . <OPT .., OPT) .\
|E5] = j | Fol B[+1 | Fy || +1

i=1 j=0

OPT OPT OPT
— 4 ot

n n—1 1

In the last step, we applied a change of variables with £ = n — j. This familiar sum is the nth

17-4

harmonic number (times OPT).

ALGO

IN

21: OPT
k
k=n
— OPT-H,

= OPT - O(logn)

Rearranging, we see that the approximation factor for the greedy algorithm is no more than some
constant multiple of log n.

ALGO
OPT

= O(logn)

17-5

	Overview
	Approximation Algorithms
	2-Approximation for Vertex Cover
	Greedy Approximation for Set Cover

