
COMPSCI 330: Design and Analysis of Algorithms April 21, 2016

Approximation Algorithms

Lecturer: Debmalya Panigrahi Scribe: Tianqi Song

1 Overview

In this lecture, we introduce approximation algorithms and their analysis in the form of approxi-
mation ratio. We also review a few examples.1

2 Approximation Algorithms

It is uncertain whether polynomial time algorithms exist for NP-hard problems, but in many cases,
polynomial time algorithms exist which approximate the solution.

Definition 1. Let P be an optimization problem for minimization, with an approximation algorithm
A. The approximation ratio α of A is:

α = max
I∈P

ALGO(I)

OPT(I)

Each I is an input/instance to P . ALGO(I) is the value A achieves on I, and OPT(I) is the value
of the optimal solution for I. An equivalent form exists for maximization problems:

α = min
I∈P

ALGO(I)

OPT(I)

In both cases, we say that A is an α-approximation algorithm for P .

A natural way to think of this (as we maximize over all possible inputs) is the worst-case
performance of A against optimal. We will often use the abbreviations ALGO and OPT to denote
the worst-case values which form α.

3 2-Approximation for Vertex Cover

A vertex cover of a graph G = (V,E) is a set of vertices S ⊆ V such that every edge has at least
one endpoint in S. The Vertex-Cover decision problem asks, given a graph G and parameter k,
whether G admits a vertex cover of size at most k. The optimization problem is to find a vertex
cover of the minimum size. We will provide an approximation algorithm for Vertex-Cover with
an approximation ratio of 2. Consider a very naive algorithm: while an uncovered edge exists, add
one of its endpoints to the cover. It turns out this algorithm is rather difficult to analyze in terms
of approximation ratio. A small variation gives a very straightforward analysis: instead of adding
one vertex of the uncovered edge, add both.

1Some materials are from a previous note by Allen Xiao.

17-1

··
·

v1 w1

v2 w2

vt wt

Figure 1: The set of vi, wi are the vertices chosen by the approximation algorithm. The optimal
vertex cover must cover all these edges; at least one vertex from each edge must have been used in
OPT as well.

Algorithm 1 Vertex Cover 2-Approximation

1: U ← E
2: S ← ∅
3: while U is not empty do
4: Choose any (v, w) ∈ U .
5: Add both v and w to S.
6: Remove all edges adjoining v or w from U .
7: end while
8: return S

Consider the vertices added by this procedure. The vertex pairs added by the algorithm are a
set of disjoint edges, since the algorithm removes adjoining vertices for every vertex it adds. OPT
must cover each of these edges (vi, wi), and must therefore pick at least one endpoint from each
edge. It follows that OPT(G) is at least half the size of |S|, so the approximation ratio for this
algorithm is at most 2.

4 Greedy Approximation for Set Cover

Given a universe of n objects X and a family of subsets S = s1, . . . , sm (si ⊆ X) a set cover is a
subfamily T ⊆ S such that every object in X is a member of at least one set in T (i.e.

⋃
s∈T s = X).

Let c(·) be a cost function on the covers, and let the cost of the set cover c(T) =
∑

s∈T c(s). The
weighted set cover optimization problem asks for the minimum cost set cover of X using covers S.

As with vertex cover, we will use a simplistic algorithm and prove its approximation ratio. Let
F ⊆ X be the set of (remaining) uncovered elements. Each step, we add the set which pays the
least per uncovered element it covers.

min
s∈S

c(s)

|s ∩ F |
Intuitively, this choice lowers the average cost of covering an element in the final set cover.

17-2

Algorithm 2 Greedy Set Cover

1: F ← X
2: T ← ∅
3: while F is not empty do

4: s← argmins′∈S
c(s′)
|s′∩F |

5: T ← T ∪ {s}
6: F ← F \ s
7: end while
8: return T

Correctness follows from the same argument as the vertex cover analysis: Elements are only
removed from F (initially X) when they are covered by the set we add to T , and we finish with F
empty. Therefore all elements of X are covered by some set in T .

To prove the approximation ratio, consider the state of the algorithm before adding the ith
set. For clarity, let Fi be F on this iteration (elements not yet covered), but let T denote the final
output set cover, and T ∗ the optimal set cover. By optimality of T ∗:∑

s∈T ∗
c(s) = c(T ∗) = OPT

T ∗ covers X, and therefore covers Fi: ∑
s∈T ∗
|s ∩ Fi| ≥ |Fi|

We can consider how the sets in T ∗ perform on the cost-per-uncovered ratio that is minimized in
the algorithm.

min
s∈T ∗

c(s)

|s ∩ Fi|
≤

∑
s∈T ∗ c(s)∑

s∈T ∗ |s ∩ Fi|
≤ OPT

|Fi|

The second inequality used “the minimum is at most the average”. Now notice that the algorithm
takes a minimum over all subsets S. Since S ⊇ T ∗, the chosen set must have had at least as low a
ratio as the minimum from T ∗.

min
s∈S

c(s)

|s ∩ Fi|
≤ min

s∈T ∗
c(s)

|s ∩ Fi|
≤ OPT

|Fi|

Finally, the cost of T is the sum of costs of its sets. Using the notation above, we can write this
expression as a weighted sum of the minimized ratios, and then apply the above inequality to find

17-3

an upper bound linear in OPT. Let s(i) be the ith set selected.

ALGO = c(T) =
∑
s∈T

c(s) =

|T |∑
i=1

c(s(i))

=

|T |∑
i=1

c(s(i))

|s(i) ∩ Fi|
· |s(i) ∩ Fi|

=

|T |∑
i=1

c(s(i))

|s(i) ∩ Fi|
· (|Fi| − |Fi+1|)

≤
|T |∑
i=1

OPT

|Fi|
· (|Fi| − |Fi+1|)

Analyzing the sum will give us an expression for the approximation ratio. Since each sum term is
OPT/|Fi| duplicated (|Fi| − |Fi−1|) times, we can replace the denominator terms to get an upper
bound.

OPT

|Fi|
· (|Fi| − |Fi+1|) =

(
OPT

|Fi|
+ · · ·+ OPT

|Fi|︸ ︷︷ ︸
(|Fi|−|Fi+1|) times

)

≤
(

OPT

|Fi|
+

OPT

|Fi| − 1
+

OPT

|Fi| − 2
+ · · ·+ OPT

|Fi−1|+ 1

)

=

|Fi|−|Fi+1|−1∑
j=0

OPT

|Fi| − j

Returning to the original sum, we realize this is actually a big descending sum of OPT/(n − j)
terms.

|T |∑
i=1

|Fi|−|Fi+1|−1∑
j=0

OPT

|Fi| − j

 =

(
OPT

|F0|
+ · · ·+ OPT

|F1|+ 1

)
+

(
OPT

|F1|
+ · · ·+ OPT

|F2|+ 1

)
+ · · ·

=
OPT

n
+

OPT

n− 1
+ · · ·+ OPT

1

=
n−1∑
j=0

OPT

n− j

=
1∑

k=n

OPT

k

In the last step, we applied a change of variables with k = n − j. This familiar sum is the nth

17-4

harmonic number (times OPT).

ALGO ≤
1∑

k=n

OPT

k

= OPT ·Hn

= OPT ·Θ(log n)

Rearranging, we see that the approximation factor for the greedy algorithm is no more than some
constant multiple of log n.

ALGO

OPT
= O(log n)

17-5

	Overview
	Approximation Algorithms
	2-Approximation for Vertex Cover
	Greedy Approximation for Set Cover

