COMPSCI 330: Design and Analysis of Algorithms	April 21, 2016
Approximation Algorithms	
Lecturer: Dehmalua Paniarahi	Scribe: Tianai Sona

1 Overview

In this lecture, we introduce approximation algorithms and their analysis in the form of approximation ratio. We also review a few examples.¹

2 Approximation Algorithms

It is uncertain whether polynomial time algorithms exist for NP-hard problems, but in many cases, polynomial time algorithms exist which approximate the solution.

Definition 1. Let P be an optimization problem for minimization, with an approximation algorithm A. The approximation ratio α of A is:

$$\alpha = \max_{I \in P} \frac{\text{ALGO}(I)}{\text{OPT}(I)}$$

Each I is an input/instance to P. ALGO(I) is the value A achieves on I, and OPT(I) is the value of the optimal solution for I. An equivalent form exists for maximization problems:

$$\alpha = \min_{I \in P} \frac{\text{ALGO}(I)}{\text{OPT}(I)}$$

In both cases, we say that A is an α -approximation algorithm for P.

A natural way to think of this (as we maximize over all possible inputs) is the worst-case performance of \mathcal{A} against optimal. We will often use the abbreviations ALGO and OPT to denote the worst-case values which form α .

3 2-Approximation for Vertex Cover

A vertex cover of a graph G = (V, E) is a set of vertices $S \subseteq V$ such that every edge has at least one endpoint in S. The Vertex-Cover decision problem asks, given a graph G and parameter k, whether G admits a vertex cover of size at most k. The optimization problem is to find a vertex cover of the minimum size. We will provide an approximation algorithm for Vertex-Cover with an approximation ratio of 2. Consider a very naive algorithm: while an uncovered edge exists, add one of its endpoints to the cover. It turns out this algorithm is rather difficult to analyze in terms of approximation ratio. A small variation gives a very straightforward analysis: instead of adding one vertex of the uncovered edge, add both.

¹Some materials are from a previous note by Allen Xiao.

Figure 1: The set of v_i , w_i are the vertices chosen by the approximation algorithm. The optimal vertex cover must cover all these edges; at least one vertex from each edge must have been used in OPT as well.

Algorithm 1 Vertex Cover 2-Approximation

- 1: $U \leftarrow E$
- $2: S \leftarrow \emptyset$
- 3: **while** U is not empty **do**
- 4: Choose any $(v, w) \in U$.
- 5: Add both v and w to S.
- 6: Remove all edges adjoining v or w from U.
- 7: end while
- 8: return S

Consider the vertices added by this procedure. The vertex pairs added by the algorithm are a set of disjoint edges, since the algorithm removes adjoining vertices for every vertex it adds. OPT must cover each of these edges (v_i, w_i) , and must therefore pick at least one endpoint from each edge. It follows that OPT(G) is at least half the size of |S|, so the approximation ratio for this algorithm is at most 2.

4 Greedy Approximation for Set Cover

Given a universe of n objects X and a family of subsets $S = s_1, \ldots, s_m$ ($s_i \subseteq X$) a set cover is a subfamily $T \subseteq S$ such that every object in X is a member of at least one set in T (i.e. $\bigcup_{s \in T} s = X$). Let $c(\cdot)$ be a cost function on the covers, and let the cost of the set cover $c(T) = \sum_{s \in T} c(s)$. The weighted set cover optimization problem asks for the minimum cost set cover of X using covers S.

As with vertex cover, we will use a simplistic algorithm and prove its approximation ratio. Let $F \subseteq X$ be the set of (remaining) uncovered elements. Each step, we add the set which pays the least per uncovered element it covers.

$$\min_{s \in S} \frac{c(s)}{|s \cap F|}$$

Intuitively, this choice lowers the average cost of covering an element in the final set cover.

Algorithm 2 Greedy Set Cover

```
1: F \leftarrow X

2: T \leftarrow \emptyset

3: while F is not empty do

4: s \leftarrow \operatorname{argmin}_{s' \in S} \frac{c(s')}{|s' \cap F|}

5: T \leftarrow T \cup \{s\}

6: F \leftarrow F \setminus s

7: end while

8: return T
```

Correctness follows from the same argument as the vertex cover analysis: Elements are only removed from F (initially X) when they are covered by the set we add to T, and we finish with F empty. Therefore all elements of X are covered by some set in T.

To prove the approximation ratio, consider the state of the algorithm before adding the *i*th set. For clarity, let F_i be F on this iteration (elements not yet covered), but let T denote the final output set cover, and T^* the optimal set cover. By optimality of T^* :

$$\sum_{s \in T^*} c(s) = c(T^*) = \text{OPT}$$

 T^* covers X, and therefore covers F_i :

$$\sum_{s \in T^*} |s \cap F_i| \ge |F_i|$$

We can consider how the sets in T^* perform on the cost-per-uncovered ratio that is minimized in the algorithm.

$$\min_{s \in T^*} \frac{c(s)}{|s \cap F_i|} \le \frac{\sum_{s \in T^*} c(s)}{\sum_{s \in T^*} |s \cap F_i|} \le \frac{\text{OPT}}{|F_i|}$$

The second inequality used "the minimum is at most the average". Now notice that the algorithm takes a minimum over all subsets S. Since $S \supseteq T^*$, the chosen set must have had at least as low a ratio as the minimum from T^* .

$$\min_{s \in S} \frac{c(s)}{|s \cap F_i|} \le \min_{s \in T^*} \frac{c(s)}{|s \cap F_i|} \le \frac{\mathsf{OPT}}{|F_i|}$$

Finally, the cost of T is the sum of costs of its sets. Using the notation above, we can write this expression as a weighted sum of the minimized ratios, and then apply the above inequality to find

an upper bound linear in OPT. Let $s^{(i)}$ be the ith set selected.

ALGO =
$$c(T)$$
 = $\sum_{s \in T} c(s) = \sum_{i=1}^{|T|} c(s^{(i)})$
= $\sum_{i=1}^{|T|} \frac{c(s^{(i)})}{|s^{(i)} \cap F_i|} \cdot |s^{(i)} \cap F_i|$
= $\sum_{i=1}^{|T|} \frac{c(s^{(i)})}{|s^{(i)} \cap F_i|} \cdot (|F_i| - |F_{i+1}|)$
 $\leq \sum_{i=1}^{|T|} \frac{\text{OPT}}{|F_i|} \cdot (|F_i| - |F_{i+1}|)$

Analyzing the sum will give us an expression for the approximation ratio. Since each sum term is $OPT/|F_i|$ duplicated $(|F_i| - |F_{i-1}|)$ times, we can replace the denominator terms to get an upper bound.

$$\frac{\text{OPT}}{|F_{i}|} \cdot (|F_{i}| - |F_{i+1}|) = \left(\underbrace{\frac{\text{OPT}}{|F_{i}|} + \dots + \frac{\text{OPT}}{|F_{i}|}}_{(|F_{i}| - |F_{i+1}|) \text{ times}} \right) \\
\leq \left(\frac{\text{OPT}}{|F_{i}|} + \frac{\text{OPT}}{|F_{i}| - 1} + \frac{\text{OPT}}{|F_{i}| - 2} + \dots + \frac{\text{OPT}}{|F_{i-1}| + 1} \right) \\
= \sum_{j=0}^{|F_{i}| - |F_{i+1}| - 1} \frac{\text{OPT}}{|F_{i}| - j}$$

Returning to the original sum, we realize this is actually a big descending sum of $\mathrm{OPT}/(n-j)$ terms.

$$\sum_{i=1}^{|T|} \left(\sum_{j=0}^{|F_i| - |F_{i+1}| - 1} \frac{\text{OPT}}{|F_i| - j} \right) = \left(\frac{\text{OPT}}{|F_0|} + \dots + \frac{\text{OPT}}{|F_1| + 1} \right) + \left(\frac{\text{OPT}}{|F_1|} + \dots + \frac{\text{OPT}}{|F_2| + 1} \right) + \dots$$

$$= \frac{\text{OPT}}{n} + \frac{\text{OPT}}{n - 1} + \dots + \frac{\text{OPT}}{1}$$

$$= \sum_{j=0}^{n-1} \frac{\text{OPT}}{n - j}$$

$$= \sum_{k=n}^{1} \frac{\text{OPT}}{k}$$

In the last step, we applied a change of variables with k = n - j. This familiar sum is the nth

harmonic number (times OPT).

ALGO
$$\leq \sum_{k=n}^{1} \frac{\text{OPT}}{k}$$

= $\text{OPT} \cdot H_n$
= $\text{OPT} \cdot \Theta(\log n)$

Rearranging, we see that the approximation factor for the greedy algorithm is no more than some constant multiple of $\log n$.

$$\frac{\text{ALGO}}{\text{OPT}} = O(\log n)$$