COMPSCI 330: Design and Analysis of Algorithms 3/31/2016

Linear Programming

Lecturer: Debmalya Panigrahi Scribe: Tiangi Song

1 Overview

In this lecture, we introduce linear programming. Linear programs are simply constrained opti-
mization problems where all functions are linear. Even when limiting ourselves to linear functions,
such problems are amazingly expressive. Many of the combinatorial problems we have seen until
now can be expressed as linear program

2 Linear Programs

A linear program is a twist on the constraint satisfaction problem, which seeks an assignment of
variables optimizing an objective subject to constraints.

min /max f(x)
s.t. g1(w) < by

In linear programming, both objective and constraints are linear functions of variables.
f(x) = a1m1 + agwa + - + apan

With n variables, we can visualize (the solutions of) any linear program as a convex polyhedron in
R™.

Example 1. Consider the following linear program:

Y
max 2z +y 1 (2,1)
st. x+y<l1
z, y=>0 z

Each complete assignment of variables is a point in R2.

x=0,y=1—(0,1)

1Some materials are from a note by Allen Xiao for COMPSCI 532 in Fall 2015.
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The linearity of the objective function makes its coefficients appear as a direction in R%. The
linear program asks to find a feasible point furthest in the direction of the objective. This can be
evaluated as the dot product of both vectors, which produces the original objective expression.

2, )T (z,y) =22 +y

The linearity of constraints causes them to appear as half-spaces in R?, bounded by hyperplanes.
Points within a half-space “satisfy” the constraint, while points on the bounding hyperplane meet
that constraint with equality. Points in the intersection of every half-spaces are feasible solutions.
The intersection of the half-spaces forms a convex polyhedron. Thus, linear programming is a
special case of convex programming.

Another way to interpret the objective is as the direction of “gravity”. If we drop a ball from
the inside of the feasible polyhedron, the point it stops at is the optimal. Of course, this suggests
several possibilities for the solution. We might have a finite (bounded) solution on some intersection
of constraints, an infinite (unbounded) solution if the polyhedron has no “bottom”, and finally no
solution if the feasible space is empty and we cannot initially place the ball. We will state these
possibilities formally later.

Example 2. Maximum flow can be expressed as a linear program. Recall that f(x,y) is the net
flow across (z,y).

max Z f(s,x)

zeV\{s}

st flz,y) <u(z,y) V(r,y) € E
> fl,y) =0 Vi # s,t
Yy

flxy) + fly,2) =0 V(z,y) €E

Linearity allows us to represent linear programs in a compact matrix form. We make a vector
of variables x and objective coefficients ¢. Each constraint is a row of matrix A bounded by a value
in b.

Definition 1. Let x € R", A € R™*" b e R™, ¢ € R". The canonical form of a linear program
18:

min c'z
st. Ax>b
x>0

Definition 2. Let z € R", Ay, A2, A3 € R™*", by, by,bs € R™, ¢ € R", x = (x1 22 x3). The
extended form of a linear program is:
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min cTx

st.  Ajx > by
Asx = by
Azx < b3
xr1 >0
o <0

Definition 3. Let x € R™", A € R™*", b € R™, ¢ € R". The standard form of a linear program
18:

min c'z
st. Ax=1b
x>0

Claim 1. Any linear program may be represented in canonical form.

Proof. Where might a linear program deviate from canonical form? Consider a minimization prob-
lem with constraints A, where a; is the jth row of A.

1. A variable x may be constrained to be negative (z < 0). We can perform a change of variables
using z = —z. It follows that z > 0, which fits the canonical form sign constraint.

2. A variable x may not be constrained in sign at all. We can again perform a change of variables,
this time using z; — z2 = x, where 21, 20 > 0. Intuitively, we can represent any number as the
difference of two nonnegative numbers.

3. A constraint may be in the < direction rather than the > direction.
a;z < bj
Negating the entire constraint gives us the correct direction.
—a;r > —b;
So we will replace the row a; and b; with their negatives.

4. A constraint may be with equality.
ajr = b;j
Recall that equality holds when both < and > hold. We replace the equality constraint with
two inequalities:
(IjLL’ = bj

= (ajz > b;) and (a;z < b))

= (ajz > b;) and (—ajz > —b;)
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5. Although not applicable to canonical form, if we want to transform a > constraint into an
equality constraint, we can accomplish this by adding a slack variable z > 0:

aijbj
= a;x—2z=0j
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