
COMPSCI 330: Design and Analysis of Algorithms 4/5/2017

Linear Programming Duality and Algorithms

Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Tianyu Wang

1 Overview

In this lecture, we will cover more examples of linear programming and introduce linear program-
ming duality. We will also present several algorithms for solving linear programs.1

First of all, let us introduce a special class of Linear Programming, Integer Linear Programming.
Since any linear programming can be formulated in its canonical form, a Integer Linear Program-
ming (ILP) can be written as

minimize
x

cTx

subject to Ax ≥ b

x ≥ 0

x ∈ Zn

In particular, if all xi are binary, the problem is a special case of ILP, sometimes referred to as
binary linear programming (BLP).

2 Formulate Problems as Linear Programs

2.1 Maximum Matching

Given a graph G(V,E), find a maximum subset S ⊆ E such that any vertex v ∈ V is incident to
at most one edge in S.

Define

Xe =

{
1 if e is in a match

0 otherwise

The integer program is

maximize
∑
e∈E

Xe

subject to
∑

e=(u,v)

Xe ≤ 1 ∀v ∈ V

Xe ∈ {0, 1}
1Some materials are from notes by Yilun Zhou, Wenshun Liu and Samuel Haney, and a note by Allen Xiao for

COMPSCI 532 in Fall 2015.

14-1



We relax our formulation to an LP:

maximize
∑
e∈E

Xe

subject to
∑

e=(u,v)

Xe ≤ 1 ∀v ∈ V

Xe ≥ 0

2.2 Vertex Cover

Given a graph G(V,E), find a subset V ′ ⊆ V of minimum size such that ∀(u, v) ∈ E, u ∈ V ′ or
v ∈ V ′.

Define

Xv =

{
1 if v ∈ V ′

0 if v /∈ V ′

The integer program is

minimize
∑
v∈V

Xv

subject to Xu +Xv ≥ 1 ∀(u, v) ∈ E
Xv ∈ {0, 1} ∀v ∈ V

We relax our formulation to an LP:

minimize
∑
v∈V

Xv

subject to Xu +Xv ≥ 1 ∀(u, v) ∈ E
Xv ≥ 0 ∀v ∈ V

2.3 Minimum Spanning Tree

Given a graph G(V,E) with edge weight we, find the minimum spanning tree T .

Define

Xe =

{
1 ife ∈ T
0 ife /∈ T

14-2



The integer program is

minimize
∑
e∈E

weXe

subject to
∑

e∈(S,S̄)

Xe ≥ 1 ∀S ⊂ V

Xe ∈ {0, 1} ∀e ∈ E

We relax our formulation to an LP:

minimize
∑
e∈E

weXe

subject to
∑

e∈(S,S̄)

Xe ≥ 1 ∀S ⊂ V

Xe ≥ 0 ∀e ∈ E

2.4 s-t Minimum Cut

Let G = (V,E) be a graph, and let s, t ∈ V . Let edge e have capacity ue. Our goal is to find a cut
(S, S̄) such that ∑

e∈(S,S̄)

ue

is minimized, and s ∈ S and t ∈ S̄. We formulate this problem as an integer program:

minimize
∑
e∈E

uexe

subject to
∑
e∈P

xe ≥ 1 ∀ path P from s to t

xe ∈ {0, 1} ∀e ∈ E

This is an integer program since values of xe must be integral. We relax our formulation to an LP.

minimize
∑
e∈E

uexe

subject to
∑
e∈P

xe ≥ 1 ∀ path P from s to t

xe ≥ 0 ∀e ∈ E

We call this the fractional minimum s-t cut problem.

14-3



3 LP Duality

3.1 Motivating Example

Consider the following LP.

minimize 10x+ 10y

subject to x+ 3y ≥ 4

2x+ y ≥ 5

x ≥ 0

y ≥ 0

It is not immediately clear what the solution to this LP is. Instead of trying to find the optimal
solution, we try to find a lower bound on the optimal. We multiply each of the first two constraints
by some number, and add them.

a · (x+ 3y ≥ 4)

+ b · (2x+ y ≥ 5)
(1)

If we set a = 2 and b = 3, we get

2x+ 6y ≥ 8

+ 6x+ 3y ≥ 15

8x+ 9y ≥ 23.

This is significant because the objective is larger than the left side of this constraint. That is,

10x+ 10y ≥ 8x+ 9y ≥ 23.

Therefore, the optimal value of the objective, 10x+ 10y, is at least 23. However, which numbers a
and b should we choose to get the best lower bound? Keeping a and b in Equation 1 gives

ax + 3ay ≥ 4a

+ 2bx + by ≥ 5b

(a+ 2b)x + (3a+ b) y ≥ 4a+ 5b.

We want to maximize the right side of this constraint, 4a + 5b to get the highest lower bound
possible. Additionally, the left side of the constraint should not be more than the objective. We
can write this as follows.

maximize 4a+ 5b

subject to a+ 2b ≤ 10

3a+ b ≤ 10

a ≥ 0

b ≥ 0

This is just another LP! We call this LP the dual, and the original LP the primal. The dual LP has
one constraint for each variable in the primal, and one variable for each constraint in the primal.

14-4



3.2 Primal-Dual Pairs

Suppose we have the following minimization program:

min cᵀx

s.t. Ax ≥ b
x ≥ 0

Let the optimal solution be x∗. It’s straightforward to show that the value of the optimal solution
is below some threshold α: demonstrate any feasible x with value α. The optimal must do at least
as well.

cᵀx = α =⇒ cᵀx∗ ≤ α
The opposite direction is not as easy – how would one show that cᵀx∗ ≥ α? We cannot use the
same trick of finding a solution of value α. Suppose instead we find y ≥ 0 such that:

Aᵀy ≤ c

Claim 1. bᵀy is a lower bound on cᵀx∗.

Proof. By feasibility:
Ax∗ ≥ b

Left multiply by yᵀ.
yᵀAx∗ ≥ yᵀb

Apply our assumption on yᵀA.
cᵀx∗ ≥ yᵀb = bᵀy

Clearly, the larger the value of bᵀy, the better the bound is. The constraints on y form a new
linear program:

max bᵀy

s.t. Aᵀy ≤ c
y ≥ 0

We formalize this notion as LP duality.

Definition 1. For a primal (P) linear program in the form:

min cᵀx

s.t. Ax ≥ b
x ≥ 0

The dual (D) linear program is:
max bᵀy

s.t. Aᵀy ≤ c
y ≥ 0

If the primal is a canonical form maximization problem, swap P and D above.

Fact 2. If D is the dual of P, then the dual of D is P. “Dual of the dual is the primal.”

14-5



3.3 Weak Duality

The claim we proved earlier, that the maximization dual lower bounds the minimization primal, is
also known as weak duality.

Theorem 3. Let x be any feasible primal solution, y be any feasible dual solution. The weak
duality theorem states that, for minimization primal, maximization dual:

cᵀx ≥ bᵀy

Alternatively, for maximization primal, minimization dual:

cᵀx ≤ bᵀy

Proof. Same as the proof for Claim 1. You may have noticed by now that most of our results
have mirrored versions for when primal is minimization or maximization. These are more or
less exchangeable (we can always switch to the dual problem as our “primal”, as suggested by
Fact 2).

Example 1. A different linear program for flow based on flow decomposition.
Let P be the s-t paths in the flow decomposition.

max
∑

p∈P (s,t)

f(p)

s.t.
∑

p:(v,w)∈p

f(p) ≤ u(v, w) ∀(v, w) ∈ E

f(p) ≥ 0

The dual is:
min

∑
(v,w)∈E

u(v, w)`(v, w)

s.t.
∑

(v,w)∈p

`(v, w) ≥ 1 ∀p ∈ P (s, t)

`(v, w) ≥ 0

One can interpret this as: the length function with minimum volume such that d`(s, t) ≥ 1. For
any s-t cut (S, S), where d`(s, t) is the distance from s to t under `,

`(v, w) =

{
1 if (v, w) ∈ (S, S)

0 otherwise

is feasible, and therefore the max-flow ≤ min-cut by merely applying weak duality.

Claim 4. For any feasible fractional `(·), there is an integral `′(·) such that
∑
u(e)`′(e) ≤

∑
u(e)`(e).

For an optimal `∗(·), there is an integral solution of equal value.

14-6



Proof. We will provide a randomized algorithm for rounding any fractional solution `(·) to an
integral `′(·) where:

E

[∑
e∈E

u(e)`′(e)

]
≤
∑
e∈E

u(e)`(e)

At least one randomized outcome is at least as low as the expectation, proving the claim.
We will use each `′(v, w) as a 0-1 random variable. Let d`(v) be the shortest distance of v from

t under edge lengths `(·). We will assign to each vertex a potential d(v) := d`(v). By the properties
of shortest distances:

d(v) ≤ d(w) + `(v, w) ∀(v, w) ∈ E

By the constraints, we must also have d(s) = d`(s) ≥ 1. To round, we choose r ∈ (0, 1) and let
S = {v | d(v) ≥ r}. If (v, w) crosses the S cut, we assign `′(v, w) = 1.

Pr
[
`′(v, w) = 1

]
=
d(v)− d(w)

d(s)
≤ `(v, w)

1

Now in expectation:

E

[∑
e∈E

u(e)`′(e)

]
=

∑
e∈E

u(e) Pr
[
`′(e) = 1

]
≤

∑
e∈E

u(e)`(e)

As desired.

Corollary 5. For primal-dual pair P and D, either of the following must hold.

1. P and D are feasible and bounded.

2. One of P and D is feasible but unbounded; then the other must be infeasible.

3. Both P and D are infeasible.

4 Linear Programming Algorithms

In this section, we present several algorithms for solving linear programs. We will mostly refer to
linear programs in canonical form:

min cᵀx

s.t. Ax ≥ b
x ≥ 0

Following that, we will introduce the idea of separation oracles, on which some of algorithms are
based.

14-7



4.1 Preliminary

Earlier, we said that the feasible space of linear programs formed a convex polyhedron:

Definition 2. A polyhedral set is the intersection of a finite number of half-spaces in Rn.

P = {x ∈ Rn | Ax ≤ b, x ≥ 0}

A linear program minimizes/maximizes some objective over points in P .

Definition 3. A vertex of a polyhedral set P is x ∈ P where for some y ∈ P :

x− y ∈ P and x+ y ∈ P =⇒ y = 0

In other words, x is not a convex combination of any other points in P .

As the name would suggest, vertices occur on the geometric “corners” of the polyhedron. In-
tuitively, our definition says that it’s impossible to move forward and backward in any direction
from x. We now tie this concept back to linear programs:

Definition 4. A basic feasible solution x ∈ P is one where n linearly independent constraints
are tight.

Lemma 6. Vertices and basic feasible solutions are equivalent.

Proof. We prove both directions.

1. (Vertex =⇒ BFS)

By contrapositive. Suppose x ∈ P is not a basic feasible solution. Let each a′i be a tight
constraint:

a′ix = bi

And let the submatrix of tight constraints be A′. Since x is not a basic feasible solution,
there are at most n − 1 linearly indpendent constraints in A′. Since A′ is not full rank, its
null space null(A′) has dimension at least 1. For any y ∈ null(A′), its projection onto A′ is 0.

projA′(y) = 0

Subsequently:

A′(x+ y) = A′x = b

A′(x− y) = A′x = b

Now consider some other constraint in this null space (not tight) ai. If the problem is not
under-constrained, there is at least one.

aix > bi

We can therefore choose a y ∈ null(A′), y 6= 0 where:{
ai(x+ y) = bi if aiy > 0

ai(x− y) = bi if aiy < 0

This is the direction y which fails the vertex definition, so x is not a vertex.

14-8



2. (Vertex ⇐= BFS)

Suppose that x ∈ P is not a vertex. Then there exists some line in direction y such that
x+ y, x− y are both in P . For every tight constraint i (by definition):

aix = bi

ai(x+ y) ≤ bi

ai(x− y) ≤ bi

Therefore aiy = 0. However, the ai form a rank n matrix by definition of basic feasible
solution, and therefore it must be that y = 0.

Lemma 7. Any bounded LP in standard form has an optimum at a basic feasible solution.

Proof. Let x be optimal for P . If x is not a basic feasible solution, there are less than n linearly
independent tight constraints. We will move in a direction which increase the number of tight
constraints, without decreasing the objective value. As before, let A′ be the submatrix of tight
constraints. We can find y ∈ null(A′) where:

A′y = 0

For sufficiently small ε > 0:
x± εy

is also feasible. Moreover:
cᵀ(x± εy) = cᵀx± εcᵀy

Optimality of x means that
cᵀy = 0

The feasible space is bounded, so one of these directions (±y) will be bounded. We move x in that
direction until a constraint becomes tight.

4.2 Simplex Algorithm (Dantzig 1947)

Simplex is a class of algorithms which solve linear programs by moving from vertex to vertex until
an optimal solution is reached. The variables which require tight dual constraints are called basic
variables (alternatively, non-basic). Simplex swaps a basic variable for a non-basic variable in an
operation known as a pivot. Gaussian elimination can be used to find the new vertex.

1. (Phase 1 )

Find an initial basic feasible solution x, with tight constraints T ⊆ {a1, . . . , am}. This can be
done by solving another LP which has x = 0 as an initial BFS.

2. (Phase 2 )

Repeatedly perform cost-improving pivots (swapping out elements of T ) until x is optimal
(no pivot improves the cost). Since the size of T does not change, x is always a basic feasible
solution.

14-9



3. Output optimal x.

The specific algorithm depends on the pivoting rule, which describes the vertex to be explored next.
There is no known pivoting rule for which the simplex algorithm is worst-case sub-exponential
time, it is quite successful in practice. For more information on hard instances for simplex-style
algorithms, look up the Klee-Minty cube.

4.3 Ellipsoid Algorithm (Khachiyan 1980)

The ellipsoid algorithm is a weakly polynomial algorithm which solves for LP feasiblity, due to
Khachiyan. However, LP optimality and LP feasibility are equivalent, so this still “solves” the
linear program.

The basic idea for the ellipsoid algorithm is:

1. Maintain an ellipsoid containing the polyhedron P .

2. Check if the center of the ellipsoid is inside P . If so, done.

3. If not, find a separating hyperplane, parallel to the violated constraint and through the
ellipsoid center, and split the ellipsoid in half.

4. Enclose the half-ellipsoid containing P in a minimal ellipsoid containing it. Recurse on this
smaller ellipsoid.

4.3.1 Separation Oracles

Something to notice is that the ellipsoid algorithm does not require the linear program to have a
polynomial number of constraints (it need not look at the linear program at all). It only requires
a polynomial time separation oracle.

Definition 5. A separation oracle reports whether a point is feasible, or else gives a violated
constraint. Formally, given candidate solution x for P = {Ax ≥ b}, show:

1. x ∈ P or

2. x 6∈ P and constraint ai where:
aix < bi

If the number of constraints is polynomial, we could just check each one manually.

Example 2. Recall the path-based LP for maximum flow:

max
∑

p∈P (s,t)

f(p)

s.t.
∑

p:(v,w)∈p

f(p) ≤ u(v, w) ∀(v, w) ∈ E

f(p) ≥ 0

min
∑

(v,w)∈E

u(v, w)`(v, w)

s.t.
∑

(v,w)∈p

`(v, w) ≥ 1 ∀p ∈ P (s, t)

`(v, w) ≥ 0

14-10



The primal problem has an exponential number of variables, but a polynomial number of
constraints (vice versa for the dual). An exponential number of dual constraints seems like a
problem to verify, but we have a separation oracle.

A polynomial time separation oracle for the dual is the shortest path under `(·). If the length
of the shortest path is < 1, then the shortest path is a violated dual constraint. Otherwise, when
the length of the shortest path is ≥ 1, we know that all paths are at least length 1 under `(cdot),
and therefore the length function is feasible. Such a shortest path can be computed in polynomial
time, using Djikstras or Bellman-Ford.

4.4 Interior Point Algorithms

Interior point algorithms stay inside the feasible space, and gradually approach the polytope bound-
ary. These algorithms use a potential function to measure the duality gap and distance from the
boundary, and a barrier function which makes the boundary unattractive. When the algorithm
approaches the boundary, it maps the polyhedron to a new space where the boundary is farther
away. Contrast to the simplex algorithm, which traces along the surface of the polytope. These
are more practical than ellipsoid.

14-11


	Overview
	Formulate Problems as Linear Programs
	Maximum Matching
	Vertex Cover
	Minimum Spanning Tree
	s-t Minimum Cut

	LP Duality
	Motivating Example
	Primal-Dual Pairs
	Weak Duality

	Linear Programming Algorithms
	Preliminary
	Simplex Algorithm (Dantzig 1947)
	Ellipsoid Algorithm (Khachiyan 1980)
	Separation Oracles

	Interior Point Algorithms


