
COMPSCI 330: Design and Analysis of Algorithms 2/2/2016 and 2/4/2016

Dynamic Programming
Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Tianyu Wang

1 Overview

In this lecture we introduce dynamic programming. Dynamic programming is method to quickly solve large
problems by first solving intermediate problems, then using these intermediate problems to solve the large
problem. We will illustrate the idea of dynamic programming via examples.1

2 Longest Increasing Subsequence

We starts with an application of dynamic programming to finding a longest increasing subsequence.

Definition 1. A subsequence of sequence x1, . . . ,xn is some sequence xφ(1), . . . ,xφ(h) such that for all k,
1≤ k ≤ h, we have 1≤ φ(k)≤ n; and for any x j in the subsequence, all xi preceding x j in the subsequence
satisfy i < j. An increasing subsequence is a subsequence such that for any x j in the subsequence, all
xi preceding x j in the subsequence satisfy xi < x j. A largest increasing subsequence is a subsequence of
maximum length.

Note that the longest increasing subsequence need not be unique. For example, consider the following
subsequence.

11 14 13 7 8 15 (1)

The following is a subsequence.
14 8 15

A longest increasing subsequence of the sequence given in 1 is

11 13 15

In this case, there are also two other longest increasing subsequences:

7 8 15

11 14 15

The problem we will solve is to find a longest increasing subsequence. What kind of subproblem will help
with this? Let the input sequence be denoted v1, . . . ,vn. We have the following two options:

Option 1 vn is in the subsequence.

Option 2 vn is not in the subsequence.

1Some of the material in this note is from a previous note by Samuel Haney for this class in Fall 2014.

4-1



Option 2 is easy, we just need to solve the same problem on a smaller sequence, so we can recurse. However,
to solve Option 1, we need to recurse on a slightly stronger problem: we would like LIS(k) to be the longest
increasing subsequence that ends at vk. Formally, we have the following expression:

LIS(k) = max
j<k

v j<vk

{LIS ( j)}+1 (2)

To finally solve our original problem, we find

LIS = max
k
{LIS(k)} .

Again, implementing this naively using recursion is slow. Instead, we want to use dynamic programming.
That is, we want to start with k = 1 and then increase k, instead of starting with k = n and recursing. We
define this formally in Algorithm 1.

Algorithm 1 Longest Increasing Subsequence
1: function LIS(v1, . . . ,vn)
2: for k← 1 to n do
3: length [k]← 1
4: for j← k+1 to n do
5: if v j > vk then
6: length [ j] ← max{length[ j], length[k]+1}
7: return max1≤i≤n{length[i]}

The runtime of Algorithm 1 is O(n2) because the nested loop is O(n2).

3 Knapsack Problem (with integer weights)

We now move to another problem: knapsack with integer weights. An instance of the knapsack problem is
a set of n items, denoted I. Each item has a value and a weight; the value and weight of the ith item are
denoted vi and wi respectively. We are given some budget W , and the goal is to select some subset of items,
I′ ⊆ I, such that

∑
i∈I′

wi ≤W,

∑
i∈I′

vi is maximized.

Unlike our previous discussion of this problem, we will not allow selecting fractions of an item. Only
whole items may be selected. Again, let’s try to break down the problem:

Option 1 vn ∈ OPT .

Option 2 vn 6∈ OPT .

For Option 2, we again recurse on the smaller problem. For Option 2, we recurse with a new budget of
W −wn. Therefore, our dynamic program needs to solve the knapsack problem for all smaller budgets.

KS(W,n) = max{KS(W,n−1),KS(W −wn,n−1)+ vn} (3)

4-2



Unlike our previous examples, this recursion has two parameters, so we will need to fill in a two dimensional
table.

0 1 2 W

1

2

3

n

Budget

Items

From the recursion, we know that each entry in the table depends on two values in the row below it.
Therefore, we should fill in the bottom row first, then continue filling in rows bottom to top. Each row can
be filled in any order. Calculating the value of each entry takes constant time. Therefore, the running time
is proportional to the size of the table, O(nW ). This running time is polynomial in the value of one of the
inputs, W , and is therefore a pseudo-polynomial time algorithm.

4 Maximal Matching on Trees

We present one more application of dynamic programming – maximal matching on trees. On general graphs,
maximal matching is NP-hard. As we will see later in the class, it is even hard to approximate. However,
the problem becomes much easier when restricted to trees.

Definition 2. Let G = (V,E) be a graph. A matching is a set of edges without common vertices.

Definition 3. A maximal matching on a graph G = (V,E) is a matching with the largest number of edges.

In addition, we also define trees.

Definition 4. A tree is an acyclic, connected graph.

Let M(v) be the size of the maximal matching in the subtree rooted at v. Like before, we have two options.

Option 1 v incidents with an edge in the maximal matching of the subtree rooted at v.

Option 2 v does not incident with any edge in the maximal matching of the subtree rooted at v.

4-3



Let c(v) denote the children of vertex v. For Option 1,

M(v) = 1+ max
u∈c(v)

{ ∑
i∈c(v),i6=u

M(i)+ ∑
j∈c(i)

M( j)}

For Option 2,
M(v) = ∑

i∈c(v)
M(i)

From here we can write out the recurrence relation.

M(v) = max

{
1+ max

u∈c(v)
{ ∑

i∈c(v),i 6=u
M(i)+ ∑

j∈c(i)
M( j)}, ∑

i∈c(v)
M(i)

}
. (4)

Our dynamic program should run from the leaves of the up to the root. The running time will be O(n),
because every node has at most one parent and one grandparent.

5 Maximal Independent Set on Trees

Maximal independent set is similar to maximal matching. They both are packing problem.

Definition 5. Let G = (V,E) be a graph. An independent set is a set of vertices {v1, . . . ,vk} ⊆ V such that
for all i, j, with 1≤ i≤ k and 1≤ j ≤ k, (vi,v j) 6∈ E.

Let IS(v) be the size of the largest independent set in the subtree rooted at v. Like before, we have two
options.

Option 1 v is in the largest independent set of the subtree rooted at v.

Option 2 v is not in the largest independent set of the subtree rooted at v.

Note that v can only appear in the independent set if none of its children are in the independent set.

IS(v) = max

{
1+ ∑

w∈granchildren(v)
IS(w), ∑

w∈children(v)
IS(w)

}
. (5)

Our dynamic program should run from the leaves of the up to the root. The running time will be O(n),
because every node has at most one parent and one grandparent.

6 Shortest Path in a DAG

Next, we try to find the shortest path in a directed acyclic graph (DAG). Recall that a DAG has directed
edges and contains no cycles. Recall the definition of a topological sort:

Definition 6. Let G = (V,E) be a graph. Let v1, . . . ,vn be an ordering of the vertices in V . v1, . . . ,vn are in
topologically sorted order if for all edges (vi,v j) ∈ E, i < j.

If G is a DAG, then it is always possible to find a topological sorting of the vertices. This ordering is not
necessarily distinct. Consider some shortest path on the DAG:

4-4



vi vk vj

Note that the shortest path to v j is the shortest path to vk, plus the edge (vk,v j). This is a property we have
used before. Additionally, we know that k < j since we have assumed that the vertices are in topologically
sorted order. How does this help us? We have the following:

SP(vi,v j) = min
vk∈V

{
SP(vi,vk)+ `(vk,v j)

}
, (6)

where `(vk,v j) is the length of the edge (vk,v j). Can we use Equation 6 to write a recursion? This is not
clear. A recursion must make progress, and this one does not. Therefore, this recursion will not necessarily
terminate. Fortunately, an additional property of the topological sort fixes this problem:

SP(vi,v j) = min
vk∈V
k< j

{
SP(s,vk)+ `(vk,v j)

}
. (7)

Now our recursion is well-defined. Is a recursive algorithm based on this recursion efficient? For each
vertex v j that we visit, we will potentially need to make a recursive call for each vk where k < j (this is the
case if every vertex preceding v j has an edge to v j). Therefore, our recurrence relation is

T (n) = ∑
i<n

T (i)+O(n)

≈ O(nn).
(8)

This is extremely slow! To fix this, we will solve the subproblems bottom-up instead of top-down. This
will prevent us from needlessly solving the same subproblems multiple times, which is causing the slow
runtime. We want to fill in the following table. Initially, v1 is zero, and the rest of the values in the table are
∞.

v1 v2 v3 vn

0 ∞ ∞ ∞ ∞ ∞

We have everything that we need to fill in v2. If we suppose there is an edge (v1,v2) of length β , we get

v1 v2 v3 vn

0 β ∞ ∞ ∞ ∞

Now, we have everything we need to fill in the value of v3! In general, when solving for v j, we consider
all vertices vi such that there is an edge (vi,v j). The value of vi plus `(vi,v j) is a potential value for v j. To
find the best value, we take the minimum of this expression over all such vertices vi (this precisely what is
asserted by Equation 7). This process is described formally in Algorithm 2.

4-5



Algorithm 2 Shortest Path in a DAG
1: function SP(V,E,s)
2: {v1, · · · ,vn} ← TOPSORT(V)

Assume: vi = s
3: d[vi]← 0
4: for v j 6= vi do
5: d[v j]← ∞

6: for j← 1 to n do
7: for k < j do
8: if d[ j]> d[k]+ `(vk,v j) then
9: d[ j]← d[k]+ `(vk,v j)

The result of this algorithm will be an array of values where each value is the shortest path in the DAG
from s to the vertex corresponding to that index in the array. To calculate the value in location i, this
algorithm takes O(i) time. Summed over all locations in the array, the running time is O(n2).

In general, we solve dynamic programs in the following two steps:

1. Come up with a table.

2. Move in the table so that we solve a problem whose required subproblems have all been solved already.

7 Longest Decreasing Continuous Subsequence

Problem description: Given a sequence of numbers a1,a2, ...an, find the longest subsequence ak1,ak2, ..akw
such that aki > ak j and k j− ki = 1 for all j = i+1.
Solution: We solve this problem by dynamic programming. Define Ki as the longest such sequence in the
first i numbers, and Li as the longest such sequence ending at the ith number. We have:

Ki+1 = max(Li+1,Ki) (9)

Li+1 = 1 i f ai+1 ≥ ai (10)

Li+1 = Li +1 i f ai+1 < ai (11)

The dynamic programming table is like:

Li

Ki

1 2 n

1

1

It takes constant time to fill one item in the table and then the running time of this dynamic programming
algorithm is O(n).

4-6



8 Minimum Edit Distance

Problem description: Given two strings a1a2...an and b1b2...bm, find their minimum edit distance. The
edit distance is the number of mismatches in an alignment, for example, the edit distance between the two
strings SUNNY and SNOWY in the following alignment is 3:

S UNN_Y
S _ NOWY

Solution: Define E[k, l] as the minimum edit distance between a1a2...ak and b1b2...bl . There can be three
kinds of alignments:

_

bl _
ak ak

bl(1) (2) (3)
.......
.......

.......

.......

.......

.......

Therefore, we have E[k, l] = minimum(1+E[k, l−1]),1+E[k−1, l],W ), where W = E[k− 1, l−1] if
ak = bl , and W = E[k−1, l−1]+1 if ak 6= bl . The dynamic programming table is like:

m

n

It takes constant time to fill one item in the table and then the running time of this dynamic programming
algorithm is O(nm).

4-7


	Overview
	Longest Increasing Subsequence
	Knapsack Problem (with integer weights)
	Maximal Matching on Trees
	Maximal Independent Set on Trees
	Shortest Path in a DAG
	Longest Decreasing Continuous Subsequence
	Minimum Edit Distance

