
COMPSCI 330: Design and Analysis of Algorithms 1/26/2016 and 1/28/2016

Greedy Algorithm
Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Fred Zhang

1 Overview

This lecture introduces a new algorithm type, greedy algorithm. General design paradigm for greedy algo-
rithm is introduced, pitfalls are discussed, and four examples of greedy algorithm are presented along with
running time analysis and proof of correctness.1

2 Introduction to Greedy Algorithm

Greedy algorithm is a group of algorithms that have one common characteristic, making the best choice
locally at each step without considering future plans. Thus, the essence of greedy algorithm is a choice
function: given a set of options, choose the current best option. Because of the myopic nature of greedy
algorithm, it is (as expected) not correct for many problems. However, there are certain problems that can
easily be solved using greedy algorithm, which can be proved to be correct.

3 Activity Selection (Interval Scheduling) Problem

3.1 Problem Description

There is a set of activities S = {a1,a2, ...,an}. Each activity ai has a start time si and a finish time fi, where
fi > si ≥ 0. The duration of activity ai is [si, fi). Two activities ai and a j are compatible if si ≥ f j or s j ≥ fi.
We want a subset of S that has maximum number of activities that are mutually compatible.

3.2 Algorithm

Sort the activities by finish time. Initialize Sm as /0. Take the activity with the earliest finish time in S and
copy it to Sm. Delete this activity and all activities that are not compatible with it from S. Keep doing this
until S is empty, and then return Sm.

3.3 Correctness

Proof is by an inductive way. Basis: if S = /0, the algorithm is correct. Inductive step: for S 6= /0, let activity a
be the activity with the earliest finish time. Let Sa be the subset of activities that contains a and all activities
that are not compatible with a. Let Sl = S− Sa, so Sa∪ Sl = S and Sa∩ Sl = /0. Assume that the algorithm
gives correct answer for input Sl . We need to prove that it also gives correct answer for S. Let W be a subset
of S that contains maximum number of activities that are mutually compatible. We can divide W into Wa

and Wl such that Wa ⊆ Sa and Wl ⊆ Sl , so Wa ∪Wl = W and Wa ∩Wl = /0. We have |W | = |Wa|+ |Wl|. Let
{a}∪Kl be the result for input S by our algorithm. Base on the assumption, we have that Kl is an optimal

1Some of the material in this note is from a previous note by Yilun Zhou for this class in Fall 2014.

4-1

solution for Sl and then |Kl| ≥ |Wl|. |Wa|= 1, otherwise, it is contradictory to that W is an optimal solution
or the fact that a is the activity with the earliest finish time. Therefore |{a}∪Kl| = |W | and the algorithm
gives correct answer for S.

3.3.1 Time Complexity

The time complexity is dominated by the cost of sorting the n items by finish time, which is O(n logn).

4 Interval Coloring

4.1 Problem Description

Let us turn to a new problem called Interval Coloring or Interval Partitioning. Suppose we are given a set
of n lectures, and lecture i starts at time s j and ends at time f j. The goal is to use the minimum number
classrooms to schedule all lectures so that no two occur at the same time in the same room. As an illustration
of the problem, consider the sample instance:4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 123

e

c

b

b

h

h

a

a

c j

e

f

f

d

d

g

g

i

i

j

(a)

(b)

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

assigned to the first resource, the second row contains all those assigned to
the second resource, and so forth.

Now, is there any hope of using just two resources in this sample instance?
Clearly the answer is no. We need at least three resources since, for example,
intervals a, b, and c all pass over a common point on the time-line, and hence
they all need to be scheduled on different resources. In fact, one can make
this last argument in general for any instance of Interval Partitioning. Suppose
we define the depth of a set of intervals to be the maximum number that pass
over any single point on the time-line. Then we claim

(4.4) In any instance of Interval Partitioning, the number of resources needed
is at least the depth of the set of intervals.

Proof. Suppose a set of intervals has depth d, and let I1, . . . , Id all pass over a
common point on the time-line. Then each of these intervals must be scheduled
on a different resource, so the whole instance needs at least d resources.

We now consider two questions, which turn out to be closely related.
First, can we design an efficient algorithm that schedules all intervals using
the minimum possible number of resources? Second, is there always a schedule
using a number of resources that is equal to the depth? In effect, a positive
answer to this second question would say that the only obstacles to partitioning
intervals are purely local—a set of intervals all piled over the same point. It’s
not immediately clear that there couldn’t exist other, “long-range” obstacles
that push the number of required resources even higher.

Figure 1: (a) An instance of the Interval Partitioning Problem with ten intervals, or rather, lectures (a through
j). (b) A solution in which all lectures are scheduled using 3 classrooms: each row represents a set of lectures
that can all be scheduled in a single classroom.

Now, is there any hope of using just two classrooms in this instance? Clearly the answer is no. We
need at least three classrooms since, for example, lectures a, b, and c all pass over a common point on the
time-line, and hence must require three classrooms. Can we generalize this argument? Let us define that the
depth of a set of intervals (lectures) to be the maximum number that pass over any single point on the time-
line. Then we observe that the number of classrooms needed is at least the depth of the input set. Hence,
any schedule that uses a number of classrooms that equals to depth is in fact optimal, since we cannot do
any better.

4-2

4.2 Algorithm

Then can we always find an optimal schedule? The answer is yes, and we now design a simple greedy
algorithm that schedules all lectures using a number of classrooms equal to the depth. Consider lectures
in increasing order of start time and assign lecture to any compatible classroom. If there all classrooms
are taken when we try to assign a lecture, then open a new classroom. We keep track of the number of
classrooms opened in the variable k.

Algorithm 1 Compute an optimal schedule
1: function SCHEDULE(s1,s2, · · · ,sn)
2: Sort the intervals by starting time in non-decreasing order.
3: d← 0
4: for j = 1 to n do
5: if lecture j is compatible with some classroom k then
6: schedule lecture j in classroom k
7: else
8: allocate a new classroom d +1
9: schedule lecture j in the new classroom

10: d← d +1

4.3 Correctness and Running Time

The running time of the algorithm is dominated by the sorting step, so it runs in O(n logn) time. Now let
us prove it indeed generates a feasible and optimal schedule that minimizes the number of classrooms. First
we observe that the greedy algorithm never schedules two incompatible lectures in the same classroom,
simply by its definition. To establish optimality, let d be the number of classrooms that the greedy algorithm
allocates. Then classroom d was opened because we needed to schedule a lecture, say j, that is incompatible
with all d− 1 other classrooms. It follows that these d lectures each end after s j. Since we sorted by start
time, these lectures also start no later than s j. Hence, we have d lectures overlapping at this moment, or
technically, at s j + ε for some small constant ε . This implies the depth is at least d and our schedule is
optimal.

5 Knapsack Problem

Consider the situation when a burglar breaks into a house. After seeing all items in the house, he has a clear
idea of what the value of each item is and what the volume of each item is. He wants to take everything but
he only has a ”knapsack” of a certain size. Thus, he wants to take a subset of items of maximum total value
but still fits his knapsack. In addition, all items are indivisible (i.e. he cannot take half of TV and get half of
its value). What should he take?

Definition 1. In a knapsack problem, there is a set I containing n items, labeled 1,2, ...,n. Each item is
associated with a value v1,v2, ...,vn and a weight w1,w2, ...,wn. In addition, there is a constraint W. The
problem asks to find the subset I′ ⊆ I that maximizes the total value of items in it ∑i∈I′ vi subject to the
constraint ∑i∈I′ wi ≤W.

The solution to this knapsack problem will be presented in a later lecture and this problem is a compu-
tational hard problem.

4-3

5.1 Fractional Knapsack Problem

Although the previous knapsack problem is not easy to solve, a variant of it, fractional knapsack problem,
can be solved efficiently using greedy algorithm.
Now suppose instead the burglar breaks into a grocery store. All items in the grocery store are divisible. For
example, he can take half a bag of flour and get half of its value. Still having the constraint of the total size
of his knapsack, what should be his strategy to take items?

Definition 2. In a fractional knapsack problem, there is a set I containing n items, labeled 1,2, ...,n. Each
item is associated with a value v1,v2, ...,vn and a weight w1,w2, ...,wn. In addition, there is a constraint W.
The problem asks to find the weight of each item to take w′1,w

′
2, ...,w

′
n that maximizes the total value of taken

items ∑
n
i=1 vi

w′i
wi

subject to the constraint ∑
n
i=1 w′i ≤W and w′i ≤ wi.

5.1.1 Algorithm

The solution to fractional knapsack problem is relatively easy to come up with. Because you can take
fraction of items, you are guaranteed to be able to fill the knapsack (note that this is not true in the previous
knapsack problem: you may have some empty room left that is smaller than all remaining items). Thus, with
a constant total weight, finding the maximum value becomes finding the maximum value per unit weight.
Thus, you should first sort the items by value per unit weight and then take items in decreasing order (most
valuable item first). Take the whole item when possible and take as much as you can for a given item when
there is no space for the whole item.

5.1.2 Correctness

We define the value per unit weight pi =
vi
wi

. The items are sorted by value per unit weight as pk1 ≥ pk2 ≥
... ≥ pkn. Let the weight of item ki in the greedy solution be wki∗. The greedy algorithm has the property
that for any i < j, if wki∗ < wki, then wk j∗ = 0. Let a general solution take ŵki amount (weight) of item ki.
We find an item ki such that ŵki < wki∗ and an item k j such that ŵk j > wk j∗, where i < j, if possible. Take
out min(wki ∗−ŵki, ŵk j−wk j∗) amount of item k j and add in the same amount of item ki. The total value in
the knapsack will not decrease because pki ≥ pk j for i < j. We keep doing this kind of transfer until it has
to stop. The transfer activities will definitely stop because each transfer will at least make one item have the
property that its weight is equal to greedy solution and then this item is out of the future transfer activities.
Note that, among the items with a different weight from the greedy solution, the one with the largest value
per unit weight must have a smaller weight than the greedy solution, otherwise, the greedy algorithm is not
greedy. Based on this fact, when the transfer activities stop, there might be two possible situations: (i) We
reach the greedy solution; (ii) Each item that may participate in the future transfer activities has a weight
that is smaller than the greedy solution. Case (ii) cannot happen because the total weight is not changed by
a transfer. Therefore, any solution can be transformed to the greedy solution and then its total value cannot
be larger than the greedy solution.

5.1.3 Time Complexity

The time complexity is dominated by the cost of sorting the n items by value per unit weight, which is
O(n logn).

4-4

5.1.4 Relation to Original Knapsack Problem

As mentioned before, in the original knapsack problem you cannot take fractions so you may end up wasting
some spaces. So in original knapsack problem, a1,a2, ...,an = {0,1}. This difference adds (a huge amount
of) complication and makes the difference of a problem that can be solved efficiently (in polynomial time)
and a problem that cannot, as we will see later this semester.

6 Huffman Code

Consider I which is a data composed of characters drawn from an alphabet C. Each character c ∈C has a
frequency f (c) which is the number of times c shows up in I. We encode each character c∈C by a codeword
which is a binary string, so we need ∑c∈C f (c)l(c) number of bits to encode I, where l(c) is the length of the
codeword of c.

a b c d
Frequency 20 10 5 1
Fixed-length code 00 01 10 11
Variable-length code 1 01 000 001

Table 1: The fiexed-length code and variable-length code of a data composed of characters drawn from
alphabet {a,b,c,d}

a, 20

b, 10

c, 5 d, 1

6

16

36

0 1

0

0

1

1

Figure 2: The tree of the variable-length code (which is a prefix code) in Table 1. The number associated
with a character is its frequency. The number in an internal node is the sum of the frequencies of its children
nodes.

There are multiple kinds of codes. A simple one is fixed-length code, where the codeword of each
character is of the same size. For example, as shown in Table 1, each character has a 2-bit codeword and
it needs (20+ 10+ 5+ 1) ∗ 2 = 72 bits to encode the data. Another way is variable-length code where
frequent characters have short codewords and infrequent characters have long codewords. If we use the
variable-length code in Table 1, it only needs 20 ∗ 1+ 10 ∗ 2+ 5 ∗ 3+ 1 ∗ 3 = 58 bits to encode the data.
Here, we only consider prefix codes in which no codeword is a prefix of another codeword. Prefix codes are
preferred because they do not cause ambiguity. Each prefix code can be described as a tree (see one example
in Figure 2), where a leaf represents a character, and the path from the root to the leaf of a character specifies
the codeword of the character.

4-5

6.1 Huffman Algorithm

Huffman code is a prefix code created by an greedy algorithm. The algorithm constructs the tree as follow-
ing: Initialize of node set S, where each character in the alphabet C is allocated a node. Choose two nodes
with least frequencies and merge them as a new node whose frequency is the sum of the two nodes. Assign
the two nodes as the children of the new node. Delete the two nodes from S and add in the new node. Keep
doing this until there is only one node in S and then return the tree.

6.2 Correctness

Proof is by an inductive way. Basis: If there are only two characters in C, the algorithm encodes each of them
by one bit and this is optimal. Inductive step: Let the characters with least frequencies in C be α and β . Let
C′ be C−{α,β}∪{γ}, where γ is achieved by merging α and β . Assume that the algorithm gives optimal
solution (tree) to C′ denoted by T ′. We want to prove that it also gives optimal solution to C: The solution to
C, denoted by T , costs L(T) = ∑c∈C f (c)lT (c) = L(T ′)+ f (α)+ f (β). If the solution T to C is not optimal,
we have another solution T ′′ such that L(T ′′) < L(T). In T ′′, a and b can be siblings because for any tree
constructed for C, we can transform it such that a and b are siblings without increasing the cost. We delete the
nodes of a and b from T ′′ to get T∗ and we have L(T∗)= L(T ′′)− f (a)− f (b)< L(T)− f (a)− f (b)= L(T ′),
which is contradictory to our assumption.

6.3 Time Complexity

There are n− 1 rounds of merging activities. The major cost of each round is to find the two nodes with
least frequencies, which is O(logn) time if we use binary min-heap, and then the total cost is O(n logn).

4-6

	Overview
	Introduction to Greedy Algorithm
	Activity Selection (Interval Scheduling) Problem
	Problem Description
	Algorithm
	Correctness
	Time Complexity

	Interval Coloring
	Problem Description
	Algorithm
	Correctness and Running Time

	Knapsack Problem
	Fractional Knapsack Problem
	Algorithm
	Correctness
	Time Complexity
	Relation to Original Knapsack Problem

	Huffman Code
	Huffman Algorithm
	Correctness
	Time Complexity

