
COMPSCI 330: Design and Analysis of Algorithms 4/3/2017

Hashing
Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Tianyu Wang

1 Overview

In this lecture, we study hashing.1

2 Hashing

We use hashing to solve the following problem: we have keys which we want to add, remove, and lookup.
Keys belong to some universe. Hashing is useful when the number of keys stored is small compared to the
universe, otherwise and array will work.

We now define the problem more formally:

Definition 1. Let U be a universe. Let S be the hash table, |S|= n, (n ≪U). A hash function h is a function
which maps from U to the n slots in S.

We first construct a simple hash function, h1.

Definition 2. Let U be a universe and n be the number of keys to be stored in the hash table. Split U into n
contiguous sections, and assign key k an index in the hash table as follows:

h1(x) = i, where x belongs to the ith section of U .

Our goal is to avoid collisions.

Definition 3. Let x,y ∈U and h be a hash function. x and y collide if h(x) = h(y) and x ̸= y.

Collisions are unavoidable, but should be minimized. For hash function h1, the fraction of pairs x,y
which collide is

n
(|U |

n
2

)(|U |
2

) = Θ(
1
n
).

For any way we divide up universe, |U |2
n is the fewest number of total possible collisions, because

Σn
i=1x2

i
|U |2 ≥ 1

n , where xi is the number of elements in U that are mapped to key i. We want to find a hash
function which satisfies the following property:

Property 1. For all x,y ∈U and x ̸= y, Pr [h(x) = h(y)]≤ 1
n .

Note that h1 does not satisfy Property 1, since for any x,y in the same section of U , Pr [h(x) = h(y)] = 1.
It is clear that no deterministic algorithm can satisfy Property 1, so we must use randomization. We define
h2 with this in mind.

1Some materials are from a previous note by Samuel Haney for this class in Fall 2014.

12-1

Definition 4. Let U be a universe and n be the number of keys to be stored in the hash table. Assign h2(x)

h2(x) = X, where X is sampled uniformly at random from {1, . . . ,n}.

Claim 1. Hash function h2 satisfies Property 1.

Proof.

Pr [x,y collide] = Pr [h(x) = h(y)]

= ∑
k∈S

Pr [h(x) = h(y) = k]

= ∑
k∈S

1
n2

=
1
n
.

The problem with h2 is that we cannot efficiently find where each key is stored. We would need to store
the location of each key in the hash table, which is exactly the problem we are trying to solve. Therefore,
we would also like our hash functions to satisfy the following property.

Property 2. h can be stored succinctly and h(x) can be recovered efficiently.

We will propose one more hashing scheme which will satisfy both Property 1 and Property 2. First,
define the concept of f ield as follows:

Definition 5 (Field). A field F is a set of elements equipped with operations + and · such that the following
axioms hold:

1. (closure under multiplication) a ·b ∈ F for all a,b ∈ F

2. (closure under addition) a+b ∈ F for all a,b ∈ F

3. (commutativity of addition) a+b = b+a for all a,b ∈ F

4. (commutativity of multiplication) a ·b = b ·a for all a,b ∈ F

5. (existence of additive identity) There is an element 0 ∈ F (additive identity), such that a+ 0 = a for
all a ∈ F.

6. (existence of additive inverse) For all a ∈ F, there is an element −a ∈ F, such that a+(−a) = 0.

7. (existence of multiplicative identity) There is an element 1 ∈ F and 1 ̸= 0, such that a · 0 = a for all
a ∈ F

8. (existence of multiplicative inverse) For all a ∈ F and a ̸= 0, there is an element a−1 ∈ F, such that
a ·a−1 = 1.

9. (distributivity of multiplication over addition) For all a,b,c ∈ F, (a+b) · c = a · c+b · c.

12-2

Examples of fields include the set of real numbers equipped with addition and multiplication, the set of
complex numbers equipped with addition and multiplication, and the set of rational numbers equipped with
addition and multiplication. In addition, each prime number p gives rise to a prime field.

Definition 6 (Prime Field). Let Fp be the set {0,1, . . . , p}, where p is prime, with operations + and · defined
as follows:

• a+b def
= (a+b) mod p, and

• a ·b def
= (a ·b) mod p.

Note that Fp is closed under + and ·, and all the axioms are satisfied. In addition, The prime field Fp

a · (b+ c) def
= (a ·b+a · c) mod p for all a,b,c ∈ Fp

Definition 7. Let U be a universe and n be the number of keys to be stored in the hash table. Assume n= p is
prime. For x ∈U, let x1, · · · ,xk be the digits of x when written in base p (i.e. xi ∈ Fp, and x = ∑k

i=1 xi · pk−1).
Then,

h3(x) =

(
k

∑
i=1

ai · xi

)
mod p,

where ai is chosen uniformly at random from Fp, for all i.

Claim 2. Hash function h3 satisfies Property 1 and Property 2.

Proof. First, note that Property 2 is satisfied. Only a1, . . . ,ak need to be stored, and h(x) is computed with a
simple sum. Proving Property 1 is more challenging.

Suppose x ̸= y and x,y ∈U .

Pr [h(x) ̸= h(y)] = Pr

[(
∑

i
ai · xi

)
≡

(
∑

i
ai · yi

)
mod p

]

= Pr

[
∑

i
(aixi −aiyi)≡ 0 mod p

]
. (1)

by definition of h. Because x ̸= y, there is an index j such that x j ̸= y j (i.e., (x j − y j) ̸= 0). Continuing from
1, we have

Pr

[
∑

i
(aixi −aiyi)≡ 0 mod p

]
= Pr

[
∑
i ̸= j

(ai (xi − yi)+a j (x j − y j))≡ 0 mod p

]
. (2)

Next, fix all ai for i ̸= j, and let

α =

(
−∑

i̸= j
ai (xi − yi)

)
mod p.

α is a fixed number, and α ∈ Fp. Let β = x j − y j and note that β ̸= 0. Continuing 2 gives

Pr

[
∑
i ̸= j

(ai (xi − yi)+a j (x j − y j))≡ 0 mod p

]
= Pr [a j (x j − y j)≡ α mod p]

= Pr [a jβ ≡ α mod p] .

12-3

Multiplying all the elements of a field by some set nonzero element gives a permutation of the field. Since
a j is chosen uniformly at random from Fp, we get

Pr [a jβ ≡ α mod p] =
1
p
.

Therefore, Property 1 is satisfied.

Definition 8. A collection of hash functions H is universal if ∀x,y ∈ U and x ̸= y, Prh∈H [h(x) = h(y)] ≤ 1
n

where h is chosen uniformly at random from H.

12-4

	Overview
	Hashing

