COMPSCI 330: Design and Analysis of Algorithms 3/01/2016

Minimum Spanning Tree

Lecturer: Debmalya Panigrahi Scribe: Tiangi Song, Yilun Zhou, Nat Kell

1 Overview

This lecture introduces basic concepts and two algorithms for minimum spanning tree: Kruskal’s algorithm
and Prim’s algorithm.

2 Minimum Spanning Tree

Definition 1. Given an undirected weighted connected graph G = (V,E), a spanning tree is a subgraph
G' = (V,E') of G, where E' C E, such that G' is connected and acyclic.

Definition 2. A minimum spanning tree (MST) is a spanning tree with minimum total weight.

2.1 Generic Property of Minimum Spanning Tree

Lemma 1. Given an undirected weighted connected graph G = (V,E), for any S C 'V, the lightest edge
cross the cut (S,V '\ S) is included in any minimum spanning tree.

Proof. Let T be a minimum spanning tree. Let the lightest edge cross the cut (S,V \ S) be (u,v), where
uec SandveV\S. If T does not contain (u,v), we can find an edge e # (u,v) in T which fulfills: (1) e is
in the path from u to v and (2) e is an edge cross the cut (S,V '\ S). Such an edge has to exist because T is a
spanning tree. We construct another spanning tree 7’ by deleting edge e from T and adding edge (u,v), and
then 7’ has a smaller total weight which implies that 7 is not a minimum spanning tree. O

2.2 Kruskal’s Algorithm

The pseudocode is:

Algorithm 1 Kruskal’s Algorithm
1: function KR(G = (V,E))
2: E'=0

3 V v € V, initial a singleton set {v}

4: Sort edges in nondecreasing order

5: for each edge (u,v) € E, taken in nondecreasing order do
6: if u and v are not in the same set then

7: E'=E'U(u,v)

8: UNION(S,,S,), where u € S, and v € S,

9: Return E’

Lemma 2. G' = (V,E’) is a spanning tree.

8-1

Proof. If G’ is not connected, there exist edges that should be selected by the algorithm but not in E’,
contradiction. Line 6 guarantees that G’ is acyclic. O

Lemma 3. After each selection of an edge by Kruskal’s algorithm, there exists a minimum spanning tree
T = (V,E,) such that E' C E,.

Proof. We prove it by induction. For the base case when E’ = 0, it is true. Assume that there exists a
minimum spanning tree 7, = (V,E,) such that E’ C E, when E’ has n edges. For the (n+ 1)tk selection
en+1, we add e, 1 to T,,. If there is no cycle, 7, is the tree that we want. If there is a cycle, there exists an
edge e in the cycle such that e ¢ E’. The weight of e must be not smaller than the weight of e, , otherwise,
e should have been selected by the algorithm. Therefore, the tree constructed by adding e, to T, and
deleting e from 7, is also a minimum spanning tree. O

Theorem 4. G' = (V,E') is a minimum spanning tree.

Proof. Directly from lemma 1 and lemma 2. O

2.2.1 Running Time

Line 4 of Kruskal’s algorithm takes O(mlogn) time since we have to sort all the edges, but the running time
of the remainder of the operations depends on the implementation of the FIND and UNION and operations,
i.e., given a collection of sets of elements, how do we find the set to which an element belongs (which we
need to do on line 5), and given two collection of elements, how do we merge the collections into a single
set (which we do on line 8). We will discuss how to implement these operations in Section 3. As we’ll see,
we can implement these operations such that the rest of procedure takes O(mlogn) time (and so the entire
procedure takes O(mlogn) time). However, if we assume we are given the edges in sorted order, we can
actually achieve a faster running time if we implement these operations carefully.

2.3 Prim’s Algorithm

The pseudocode is:

Algorithm 2 Prim’s Algorithm
1: function PR(G = (V,E))

2: cls]=0

3 Yv#s eV, clv] = +oo, prevlv] = NIL
4 E' =0

5: H=V

6: while H = (0 do

7: u = deletemin(H)

8: E'=E'"U(prev[u),u),ifu+#s

9: for all (u,v) € E, where v € H do
10: if c[v] > I(u,v) then

11: cv] = 1(u,v)

12: prev[v]| = u

8-2

2.3.1 Running Time

Prim’s algorithm has the same running time as Dijkstra’s algorithm, O(|E|log|V|), by binary heap. It can
be improved to O(|E| + |V|log|V|) by Fibonacci heap.

2.3.2 Correctness Proof

We prove that, after each selection of an edge by Prim’s algorithm, there exists a minimum spanning tree
T = (V,E,) such that E’ C E,. We prove it by induction. For the base case when E’ = 0, it is true. Assume
that there exists a minimum spanning tree 7, = (V,E,) such that E' C E, when E’ has n edges. For the
(n+ 1)th selection e, 1, we add e, 1 to T,,. If there is no cycle, 7,, is the tree that we want. If there is a cycle,
there exists an edge e # e, in the cycle such that e only has one endpoint in V \ H,,, where H, denotes H
after n selections, because e, only has one endpoint in V' \ H,. The weight of ¢ must be not smaller than
the weight of e, |, otherwise, e should be selected by the algorithm instead of e, ;. Therefore, the tree
constructed by adding e, to 7, and deleting e from 7j, is also a minimum spanning tree.

3 The Union-Find Data Structure

3.1 Storing Components for Kruskal’s Algorithm

For a weighted graph G = (V,E) where w, denotes the weight of edge e € E, recall Kruskal’s algorithm
for computing a minimum spanning tree (MST) of G. At a high level, we begin Kruskal’s algorithm by
initializing each vertex to be in its own component. Then in order of increasing edge weight, we repeatedly
add edges to the tree if they merge two of the current components together (i.e., if e = (u,v) is the edge we
are considering, we add edge e to our tree if u is currently in a different component than v). Once all vertices
lie in the same component, we argued that the resulting structure does in fact give us a MST.

However, when we previously outlined the pseudo-code for Kruskal’s, we glossed over how to represent
these collections of vertex sets in memory. On the iteration where we consider adding edge e = (u,v), we
need to quickly find out if # and v belong to the same component, and if they do not, we need to merge these
components together.

To perform such queries and operations, we will implement a union-find data structure. A union-find
data structure D is defined over a set of n elements U = {xj,...x,} and maintains a collection of disjoint
subsets Sy, ...S, to which these elements belong, where 1 < h < n. As in our scenario above, every element
is in its own subset when D is initialized. D then supports the following two operations:

e FIND(x): return S; such that x € S; (in an actual implementation, we would likely just return the
representative element for set S;).

e UNION(S;,S;): Replace S; and S; with S; US; in the set system.

So for Kruskal’s algorithm, we initialize a union-find data structure over the vertices. For each edge
e = (u,v), if FIND(u) #FIND(v), then we call UNION(FIND(u), FIND(v)) to merge « and v’s components
(otherwise, we move on to the next edge). In total we will issue at most 2m FIND queries and always
perform n UNION operations.

8-3

3.2 Implementing Union-Find

We now turn to the details of implementing FIND (x) and UNION(S;, S;) efficiently. Our first implementa-
tion decision is to how to represent the “labels” for each set. Here, we will use elements as representatives:
At any given time, there will be a unique x € S; which we will return as the label of S; whenever we call
FIND(y) for any y € S; (in the following implementations, we will make it clear how each representative is
determined/maintained).

3.2.1 Union-Find with Linked Lists

The most obvious way to represent the set system is to just use a collection of linked lists. For each set S;,
we have a corresponding linked list L; which contains the elements in S;. The representative of L; will just
be element at the head of the list, which is then preceded by the the rest elements in S; through a sequence
of pointers. To execute FIND(x), we start at x and follow the path of pointers leading to the head and then
return it as the label of the set. Note that since there can be Q(n) elements in a set, we might have to traverse
Q(n) links to reach a set’s label; therefore when using linked list, FIND(x) runs in ®(n) time in the worst
case. UNION operations, however, are quite simple. To implement UNION(S;,S;), we just make the head of
L; point to the tail of L; (or vice versa). Since we can store head/tail metadata along with the head of a list,
UNION is an O(1) time operation.

As noted above, a given run of Kruskal’s may do 2m FIND(e) queries, which gives us a ®(mn) time
algorithm in the worst case. When we first presented Kruskal’s algorithm, we claimed a running time of
O(mlogn); therefore, using this linked list implementation will not suffice.

3.2.2 Union-Find with Trees

If we want to maintain the property that UNION operations still take O(1) time, a natural improvement to
this linked list scheme is to instead maintain a set of trees. Now, a set S; corresponds to a tree 7;, where the
representative of the set is at the root. To implement UNION(S;,S;), we make 7; a subtree of 7; by making
the root of T; the parent of the root of 7;. Note that this implies that each tree is not necessarily binary since
a fixed root r can participate in several UNION operations (it is possible that each UNION results in another
subtree rooted at r).

FIND(x) still works in the exact same way—we simply start at x and follow a path up the corresponding
tree via parent pointers until we reach the root. Our hope is that if each tree structure remains balanced,
then we can bound the longest path from node to root when doing a FIND query. However, our current
specifications do not ensure balance. For example, consider the sequence of n unions

{x1}U{x}
{3} Ufxr, o}
{)C4} U {X17X2,X3}

{xa U1, o yxn—1

Informally, we grow one particular set in the set system, and then with each UNION we add one of the
remaining singleton sets to this growing set. When we perform UNION(S;,S;) in this scheme, note that we
are arbitrarily picking which root (the root of 7; or the root 7;) becomes the new root when we combine T;
and T;. Thus in the above example, it is possible that when we merge S = {x;} with 8’ = {xy,...,xi_1},

8-4

we use x; as the new root each time. If we are unfortunate enough to have this sequence of events happen
for each union, then the resulting tree structure will just be an n element linked list (and therefore it is still
possible for FIND(x) to take Q(n) time).

A straight forward way to fix this pitfall is to do what is called union-by-depth. For each tree T;, we
keep track of its depth d;, or the longest path from the root to any node in the tree. Now when we perform
a UNION, we check to see which tree has the larger depth and then use the root of this tree as the new
root. Note that this extra information can be easily stored and updated with the root of each tree: If we call
UNION(S;, SJ-) and d; < d;, then the root of T; becomes to root of 7; U T}, and we update the depth of 7; U T;
to be max(d;,d; + 1) (note this max is only necessary in the case where d; = d j—otherwise, the depth of the
combined tree is no larger than depth of 7}).

What does “union-by-depth” buy us? The following theorem establishes that this feature does indeed
balance the trees in the set system.

Theorem 5. For a tree implementation of the union-find data structure that uses union-by-depth, any tree
T (representing set S; in the set system) with depth d contains at least 2¢ elements.

Proof. We do a proof by induction on the tree depth d. Since a tree T with depth 0 has has 2° = I elements,
the base case is trivial. For the inductive step, assume that the hypothesis holds for all trees with depth k — 1,
i.e., any tree with depth k — 1 contains at least 2¥~! nodes. Observe that in order to build a tree T with depth
k, we must merge together two trees 7; and 7} that both have depth k — 1; otherwise, we would either have:

1. Both 7; and T have depth strictly less than k— 1. Since the depth of 7;UT; can be no more max(d;,d;)+
1, the combined tree T; U T; can have depth at most k — 1 (note this is true regardless of whether we
use union-by-depth).

2. Exactly one tree has depth k — 1; without loss of generality, suppose d; =k — 1 and d; < k— 1. Since
we are using union-by-depth, we will make the root of 7; U T; the root of T;. Since d; < k— 1, the
length of any path from this new root of to any node in 7; can be at most k — 1. Since 7} has depth
k — 1 and no node in within this subtree changes depth in 7; UT; , the depth of the combined tree is
exactly k— 1.

Therefore, assume d; = d; = k — 1, we can then apply our inductive hypothesis to both 7; and 7; to
obtain:
IT|=|LUT)| = |Ti|+|T;| > 2" 4241 =2,

as desired.
O

Theorem 5 implies that any tree with n elements can have depth at most logn (the theorem implies
n > 2¢ where d is the depth of the largest tree/subset, implying logn > d). Therefore, FIND(x) runs in
O(logn) when using union-by-depth. From Kruskal’s perspective, this gives us the desired running time.
The initial sort we do on the edge weights takes O(mlogm) = O(mlogn®) = O(mlogn) time. We then do n
UNIONS that each take O(1) time and 2m FINDs that each take O(logn) time. Therefore, the overall running
time of Kruskal’s using this implementation is O(mlogn) + O(n) + O(mlogn) = O(mlogn).

8-5

3.2.3 Union-Find with Stars

Although doing a tree implementation that uses union-by-depth gave us the desired asymptotic running
time of O(mlogn), it is a bit unsettling that UNIONs take constant time and FINDs could take Q(logn)
time. Since n = O(m) for any graph where we want to find a spanning tree, it seems a bit wasteful that
our implementation gives us a faster running time for the function we call fewer times (recall we perform
n UNIONs and at most 2m FINDs). Therefore in this section, we will look at an implementation where we
force each FIND to take O(1) time, but as a result make UNIONs operations more expensive (but hopefully
by not by too much).

The most naive way to achieve O(1)-time FINDs is to represent sets as star graphs. A star graph is
simply a tree with a designated a center node such that every other node in the graph is a leaf that is only
adjacent (or points) to this center node. Thus, we will maintain that each tree 7; that represents a set S; is a
star graph, where the center node of 7; is the representative of S;. Clearly with this scheme, when we call
FIND(x) we must only traverse at most 1 link to reach the representative node, and therefore the running
time of FIND(x) is O(1).

However to maintain this star graph structure, we will need to take more time when we make a UNION
call. If we have two star graphs 7; and 7; that we want to merge, we first need to pick which representative
element we will use for 7; UT; (just like for our previous implementation with balanced trees). If we pick
T;’s center c; to be the new center, we then need to iterate through every element x € 7; and make x point to
¢;. Since T; could have Q(n) elements, this operation could take Q(n) time. Therefore if we do n UNION
operations, our running time for Kruskal’s is now ®(n?) (which could be worse than O(mlogn)).

To avoid this problem, we will use a rule that is similar to union-by-depth. Namely, we will use union-
by-size. Namely, if we are given two star graphs 7; and 7;, we will dissemble the smaller of the two sets
and make these elements point to the center of the larger set (and leave the star graph in the larger graph
untouched).

To analyze the speedup obtained from doing union-by-size, we use a charging argument to do an amor-
tized analysis over the n UNIONs performed by Kruskal’s. We use the folioing charging scheme: Any time
we merge two trees Ty and Ty such that |T;| < |T;|, we will simply put a unit of charge on each element in 7
(remember that we are taking the elements of 7 and changing their pointers to the center of 7;). Note that
for all x € Ty, x now belongs to a set that is twice as large. We also know that for x € U, the set to which x
belongs can double at most logn times (the size of final merged set is n); therefore, the charge on a given
element x can be at most logn after n unions. Since the total time needed over all n unions is equal to the
total charge distributed over the elements, the time it takes to make n UNION calls is O(nlogn). Note that
even though Kruskal’s algorithm still runs in O(mlogn) time since we must initially sort the edges, we have
reduced the time it takes to execute Kruskal’s merging procedure to O(nlogn + m).

3.2.4 Optimal Union-Finds: Path Compression and Union-by-Rank

We will now outline the best scheme for implementing a union-find data structure. This implementation will
be more akin to what we saw in Section 3.2.2 when we used balanced trees to represent our set system. The
main feature we will add to this implementation is what is known as path compression, which will attempt to
make our trees more “star-graph-like” whenever we make a FIND call (so in some sense, we are combining
the strategies in sections 3.2.2 and 3.2.3).

More specifically, whenever we call FIND(x) where x € S;, we will follow some path P from x to the
root 7; of S;. For each element y € P, we now know that y belongs to set S;; therefore at this point, it makes
sense to make each of these elements point directly to r;. FIND(x) with path compression does exactly this

8-6

modification, and therefore after the procedure completes, r; and all the elements along P now form a star
graph in T;. Note that it is not too hard to implement FIND(x) such that it returns r;, makes every element in
P point directly to r;, and runs in O(|P|) time.

To implement UNION, we essentially still use union-by-depth. We still merge components using the
same rule (we make the tree with the smaller depth a subtree of the tree with the larger depth). Note,
however, that because we might have path compressing FIND calls in-between UNION calls, we might
compress a path that defined the depth a given tree 7;. In such a case, d; no longer accurately stores the
depth of d;.

How does one fix this issue? The answer is that we do not. Instead, we just call this d; the rank of T; and
use it in the same way we would in our union-by-depth scheme. It turns out that using these two features
in combination gives us an extremely good bound over n UNIONs and 2m FINDs. Clearly, the n UNION
operations still take O(n) time in total since each UNION call takes O(1) time. Using an advanced amortized
analysis, one can show that the 2m FIND(x) queries take O(m -log*(n)) time, where log*(n) is number of

2
times we need to “log” the number 7 for it to become less than 1 (so for example, log* (222) =4, since

2
loglogloglog (222) = 1). Note that his function grows extremely slowly. For example, log*(10%°) =4, and

108 is roughly the number of atoms in the observable universe. So for practical purposes, we can think of
log*(n) as a constant; however we still express the running time as O(m -log* n) to be theoretically correct,
since log*(n) is still a function that tends towards infinity as n goes to infinity.

8-7

