
CS 330 Discussion - Randomized Quicksort,

Collision Handing

March 31 2017

1 Randomized Quicksort Alternate Analysis

In lecture, we showed that randomized quicksort runs in O(n log n) time in ex-
pectation. However, this statement alone suggests it is possible that it may run
in time greater than O(n log n) with non-trivial probability. In this discussion,
we will present an alternative runtime analysis which shows that it runs in time
O(n log n) with high probability.

To use this proof, we will need to use an inequality called the Chernoff
bound, which we state here without proof:

Theorem 1. Chernoff Bound - Let X be some random variable which can
be written as X =

∑
iXi, where each Xi only takes value 0 or 1. Let µ be the

expected value of X. Then, Pr[X < (1− ε)µ] ≤ e−
ε2µ
3

We will use an amortized analysis where we charge 1 to each element s for
each subproblem it participates in. In other words, s is charged the number of
subproblems it participates in before it is chosen as a pivot.

Let h(s) be the number of subproblems s participates in. Then an upper
bound for the runtime of the algorithm is nmaxs h(s).

We will show that h(s) ∈ O(logn) for all s with high probability. To do
this, we need to show that the recursive subsequences chosen are often roughly
balanced in length.

Let a ”good” subproblem involving s be one where if we partition the se-
quence S into S1, S \S1, 1

4 |S| ≤ |S1| ≤ 3
4 |S| (if this is true for S1, it is also true

for S \ S1).
First, we bound the number of good subproblems any element can participate

in:

Lemma 1. Any element s can only participate in O(log n) good subproblems.

Proof. s is initially part of the original problem with n elements. No subproblem
is smaller than size 1. Each time s participates in a good subproblem involving
sequence S, the next subproblem it participates in is of size at most 3

4 |S|. Thus,
if s has participated in log4/3 n subproblems, the size of the next subproblem it
participates in cannot be more than 1. This proves the lemma.

1

Let Xs,i be an indicator variable of the event that the ith subproblem s
participates in is a good subproblem. That is Xs,i = 1 if the ith subproblem
s participates in is good and 0 otherwise. Note that by definition of good
subproblems, Xs,i is 1 with probability 1

2 .
Let Xs(N) be the number of good subproblems in the first N subproblems

s participates in. Note that Xs(N) =
∑N

i=1Xs,i. Then E[Xs(N)] = N
2 for any

N .
Then, let us apply the Chernoff bound to Xs(N). We get that:

Pr[Xs(N) < (1− ε)N
2

] ≤ e−
−ε2N

6

Since s is done participating in subproblems after it participates in Ω(log n)
good subproblems, we want to bound the number of subproblems it takes to see
Ω(log n) good subproblems. Then, let us choose N = 2C log n.

Pr[Xs(2C log n) < (1− ε)C log n] ≤ n−
−ε2C

3

If we can show a single element participates in more than O(log n) sub-
problems with probability 1

n2 , we can then show that no element participates
in ω(log n) subproblems with high probability. In order for the right side of the

inequality to be 1
n2 , we choose ε =

√
6
C .

Pr[Xs(2C log n) < (1−
√

6

C
)C log n] ≤ n−2

.
In order for this to be a meaningful bound, we just choose some C > 6.
Now, this statement says that if s has participated in 2C log n subproblems,

it has participated in roughly C log n good subproblems with high probability.
If C is large enough then by the above Lemma, it cannot participate in any more
subproblems. Thus, s participates in ω(log n) subproblems with probability 1

n2 .
Then, the probability that some s participates in ω(log n) subproblems

is at most 1
n by union bound. This means that all s participate in O(log n

subproblems with probability at least 1 − 1
n , i.e. that randomized quicksort

finishes in O(n log n) time with high probability.

2 Collision Handling

We now move on to discussing hashing collisions. If a perfect hash code existed,
no two elements would ever hash to the same value in a hash table (i.e. collide) ,
and hashing would be an O(1) time operation. However, hashing is not perfect
in practice, and collisions do occur, thus some way of dealing with collisions
(collision handling) must be implemented.

There are multiple ways to handle collisions. Here, we discuss their benefits
and tradeoffs. For all collision handling methods, the process is the same as
lookups - for handling a collision, we move to new locations to store the value

2

until some empty location to store it is found. For a lookup of some value, we
start with the position the value would be if no collision occurred, and search
use the same sequence of locations the collision handling method uses until the
element is found or we encounter an empty location. Thus, all collision handling
methods are analagous to table lookup methods for themselves.

2.1 Separate chaining

Separate chaining refers to collision handling methods where each bucket re-
mains independent, but can hold multiple values. To do this, rather than have
each bucket hold a single value, we’ll have each bucket hold a data structure
which can hold multiple elements should a collision occur. Separate chaining is
effective when said data structure runs efficiently for the number of expected
collisions per bucket - e.g. if we expect a low number of collisions per bucket, a
data structure which maybe does not scale well but operates very quickly on an
architectural level is desirable. For a large number of collisions, a data struc-
ture which scales well is desirable, even if it runs poorly for a few elements. In
addition, on an architectural level, it might involve referring to data structures
which are not near the hashtable in memory, which could be slow to access.

2.1.1 Separate chaining with linked lists

In separate chaining with linked lists, each bucket contains a pointer to the
head of a linked list of values, or alternative is the head of such a linked list.
Then, if a collision occurs, we append the value to the end of the linked list in
the bucket. This implementation is very simply to use, and often taught and
implemented for that reason. However, if a large number of collisions occur, it
is slowed very easily.

2.1.2 Separate chaining with self-balancing trees

Separate chaining with self-balancing trees is similar to separate chaining with
linked lists, except we use a self-balancing ordered tree instead of a linked list.
The benefit is that the runtime of an add or lookup scales logarithmically with
the number of collisions, rather than linearly. However, it requires more memory
to be implemented.

2.2 Open addressing

Open addressing could be called the opposite of separate chaining. In separate
chaining, buckets have independence and store multiple values. In open address-
ing, buckets store single values and one bucket having many values hashed to it
may affect other buckets. In open addressing, if a collision occurs in one bucket,
rather than have each bucket hold a variable amount of space we can search
for empty space in, we instead search through other buckets in a deterministic
fashion and place our colliding value into the first empty bucket we find. Open

3

addressing is very easy to implement and on an architectural level tends to per-
form better than separate chaining because all the values are stored in memory
locations which are near each other. However, it may slow down considerably if
many of the buckets in the hashtable already have values in them, and is, and
also will do poorly if the hash code does not actually hash elements uniformly.

2.2.1 Linear probing

In linear probing, when a collision occurs, we move on to a bucket a fixed number
of spaces away from the original bucket (this is usually 1 for simplicity). If this
bucket also already has a value, we repeat this process until we find an empty
bucket. Linear probing has all the benefits of open addressing, but struggles if a
hash code not only maps values to the same bucket frequently, but also tends to
hash elements to nearby buckets. In this case, the collisions of buckets nearby
each other compound their runtimes in the case of a collision. For example, if
we often hash to buckets 100 and 101, collisions in these buckets would place
colliding values into the same set of buckets, meaning many collisions in bucket
100 would slow down collisions and lookups for bucket 101, even if it has few
values hashing to it. To avoid this, we can instead do quadratic probing

2.2.2 Quadratic probing

In linear probing, if k values collided in bucket H, then the sequence of buckets
we used was H + 1, H + 2, H + 3...H + k. In quadratic probing, rather than use
a constant increment and linear offsets, we’ll use quadratic offsets. That is, if
k values collide in bucket H, they would go in buckets H + 1, H + 4, ...H + k2.
This adds basically nothing in terms of extra computation, and greatly avoids
the issues of linear probing because the intersection between the set of buckets
two buckets will use in the case of a collision is small for any pair of buckets.

2.2.3 Double hashing

In double hashing, we have two hash functions h1, h2, the second of which takes
non-zero values, and whose values ideally are not correlated. When we try to
add a value s to the hash table, we’ll first try to add it to bucket h1(s). If this
bucket is already in use, we’ll try h1(s) + h2(s) instead. If this also fails, we
can then choose to start storing multiple values in one bucket using separate
chaining, or use more than 2 hash functions. Double hashing is effective in that
there’s even less overlap in the space used by any pair of buckets, but requires
the computation of an extra hash function or functions, as opposed to simpler
calculations like in linear or quadratic probing.

2.2.4 2-choice hashing

2-choice hasing is a combination of the ideologies behind separate chaining and
open addressing. In 2-choice hashing, we have two hash functions. For each
value we hash, each hash function suggests a bucket to place the value in, and

4

we choose whichever suggested bucket has less values in it. This is useful for
keeping bucket sizes relatively even, but suffers from extra computational load
per collision.

5

