
Introduction
Introduction to Databases
CompSci 316 Spring 2020

Welcome to

CompSci 316: Introduction to Database Systems!!
Spring 2020

2

About us: instructor

• Instructor: Sudeepa Roy
• At Duke CS since Fall 2015
• Member of “Duke Database Devils”

a.k.a. the database research group
• PhD. UPenn, Postdoc: U. of Washington
• Research interests:

• “data”
• data management, database theory, data

analysis, data science, causality and
explanations, uncertain data, data
provenance, crowdsourcing, ….

3

Meet your grad TAs
4

Xiangchen Shen

Tiangang Chen

Yuchao Tao

• Duke CS MS student
• Interested in computer systems
• Runs a half-marathon every year!

• Duke CS MS student
• Interested in data science and machine

learning, currently working on image
processing

• Loves cats!

• Duke CS PhD student
• Interested in databases and privacy research
• Enjoys cooking!

* All CompSci 516 veterans

Meet your UTAs
5

Jane Li

David Chen

Runxin (Rebecca) Wang

• Duke CS major
• Interested in applying computational models and algorithms to

biological systems
• Loves to downhill ski!

• Duke CS major, minor in Visual Media studies
• Interested in UI/UX, front-end development,

and project management
• Has two dogs and a hamster!

• Duke CS major
• Interested in coding, machine learning, and theory
• Loves hiking and bubble tea!

* All CompSci 316 veterans

What are the goals of this course?

6

• Learn about “databases” or data management

Why do we care about data? (easy)
7

… The three years of gathering and analyzing
data culminated in what U.S. Sailing calls
their “Rio Weather Playbook,” a body of
critical information about each of the seven
courses only available to the U.S. team…

— FiveThirtyEight, “Will Data Help U.S.
Sailing Get Back On The Olympic Podium?”

Aug 15, 2016

Data =
Money
Information
Power
Fun
in
Science, Business,
Politics, Security
Sports, Education, ….

Wait.. don’t we need to take a Machine Learning or
Stat course for those things?

8

Pic: https://www.technobuffalo.com/sites/technobuffalo.com/files/styles/xlarge/public/wp/2012/05/confused-student.jpg

Yes, but..

... we also need to manage this (huge or not-so-huge) data!

9

Also think about building a new App or
website based on data from scratch

• E.g., your own version of book purchase platform
(like a mini-Amazon)
• Large data! (think about all books in the world or

even in English)

•How do we start?

10

* You are going to do something similar in the course project!

Who are the key people?
11

Who are the key people?

• At least two types:
• Database admin (assuming they own all copies of all the

books)
• Users who purchase books
• Let’s proceed with these two only

• Other people:
• Sellers
• HR
• Finance
• Who deal with the warehouse of the books
• ….

12

What should the user be able to do?
13

• i.e. what the interface look like? (think about
Amazon)

What should the user be able to do?

• i.e. what the interface look like? (think about
Amazon)

1. Search for books
• With author, title, topic, price range, ….

2. Purchase books
3. Bookmark/add to wishlist

14

What should the platform do?
15

What should the platform do?

1. Returns books as searched by the authors
2. Check that the payment method is valid
3. Update no. of copies as books are sold
4. Manage total money it has
5. Add new books as they are published
6. ….

16

What are the desired and necessary
properties of the platform?

17

What are the desired and necessary
properties of the platform?

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should not

be lost or inconsistent
• Imagine a user was in the middle of a transaction when a crash

happened, paid the money, but the book has not been purchased

• No surprises with multiple users logged in at the same time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

18

That was the design phase
(a basic one though)

19

https://i1.wp.com/dynamiclandscapes.vita-learn.org/wp-content/uploads/2019/05/Lets-code.jpg?resize=768%2C432&ssl=1

How about C++, Java, or Python?
On data stored in large files

Sounds simple!

• Text files – for books, customer, …
• Books listed with title, author, price, and no. of

copies
• Fields separated by #’s

20

James Morgan#Durham, NC

... ...
A tale of two cities#Charles Dickens#3.50#7
To Kill a Mockingbird#Harper Lee#7.20#1
Les Miserables#Victor Hugo#12.80#2
... ...

Query by programming

• James Morgan wants to buy “To Kill a Mockingbird”
• A simple script

• Scan through the books file
• Look for the line containing “To Kill a Mockingbird”
• Check if the no. of copies is >= 1
• Bill James $7.20 and reduce the no. of copies by 1

21

James Morgan#Durham, NC

... ...
A tale of two cities#Charles Dickens#3.50#7
To Kill a Mockingbird#Harper Lee#7.20#1
Les Miserables#Victor Hugo#12.80#2
... ...

Better idea than scanning?

What if he changes the “query” and wants to buy a book by Victor Hugo?

Binary search! Keep
file sorted on titles

Revisit: What are the desired and
necessary properties of the platform?

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should

not be lost or inconsistent
• Imagine a user was in the middle of a transaction when a

crash happened, paid the money, but the book has not been
purchased

• No surprises with multiple users logged in at the same
time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

22

Try to open
a 10-100 GB file

Try to search
both on a large
flat file

Imagine
programmer’s
task

Imagine adding a new book or updating
Copies (+ allow search) on a
10-100 GB text file

Solution?
23

• DBMS = Database Management System

A DBMS takes care of all of the
following (and more):

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should not

be lost or inconsistent
• Imagine a user was in the middle of a transaction when a crash

happened, paid the money, but the book has not been purchased

• No surprises with multiple users logged in at the same time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

24

In an easy-to-code, efficient, and robust way

Index

ConsistencyRecovery

Declarative

Optimization

* We will learn
these in the course!

DBMS helps the big ones!
25

Note: Not always the “standard” DBMS (called Relational DBMS),
but we need to know pros and cons of all alternatives

CompSci 316 gives an intro to DBMS
• How can a user use a DBMS (programmer’s/designer’s

perspective)
• Run queries, update data (SQL, Relational Algebra)
• Design a good database (ER diagram, normalization)
• Use different types of data (Mostly relational, also XML/JSON)

• How does a DBMS work (system’s or admin’s perspective)
• Storage, index
• Query processing, join algorithms, query optimizations
• Transactions: recovery and concurrency control

• Glimpse of advance topics and other DBMS
• NOSQL, Spark (big data)
• Data mining

• Hands-on experience in class projects by building an end-to-
end website or an app that runs on a database

26

Misc. course info
• Website:

https://www2.cs.duke.edu/courses/spring20/compsci316/
• Course info; tentative schedule and reference sections in the book;

lecture slides, assignments, help docs, …

• Book: Database Systems: The Complete Book, by
H. Garcia-Molina, J. D. Ullman, and J. Widom. 2nd Ed.
• Programming: VM required, need significant programming

on different platforms and languages
• Prerequisite: CompSci 201 - or you would have to learn some

concepts yourself
• Q&A on Piazza
• Grades, sample solutions on Sakai
• Submissions on Gradescope and Gradiance
• Watch your email for announcements

27

https://www2.cs.duke.edu/courses/spring20/compsci316/

Important: Grading
Absolute but adjustable grading
Guarantees:
[90%, 100%] A- / A / A+
[80%, 90%) B- / B / B+
[70%, 80%) C- / C / C+
[60%, 70%) D

Class topper gets A+
• Scale will not go upwards but can get downwards

(e.g., based on the class performance in the exams)

• We will give you a feedback on your approximate
standing after the midterm.

28

Duke Community Standard

• See course website for link
• Group discussion for assignments is okay (and

encouraged), but
• Acknowledge any help you receive from others
• Make sure you “own” your solution

• All suspected cases of violation will be aggressively
pursued

29

Course load
• (See course webpage for full details)

• Weekly (short) homework assignments (25%)
• Each homework has same weight
• Released on Tuesdays and due next Tuesday night (mostly)
• Gradiance: immediately and automatically graded
• Gradescope: programming problems, immediate feedback, later

also manual grading
• Gradescope: written solution, manual grading

• Midterm and final (20% each)
• Open book, open notes
• No communication/Internet whatsoever
• Final is comprehensive, but emphasizes the second half of the

course

30

Course load (contd.)
• Course project (20%)

• Details to be given in the next 1-2 weeks

• In-class quiz (5%)
• To review concepts right away in class – will be open for 5-10 mins
• Will be announced at least one class in advance and on piazza
• Each quiz: 50% for attempt on time and 50% for correct solution
• Lowest score will be dropped (each quiz has same weight)

• In-class labs (5%)
• Practice problems in class (both programming and conceptual) –

each lab has the same weight
• Will be announced at least one class in advance and on piazza
• Due by the next day after class, 10% bonus points for finishing all

problems in class correctly
• TAs will be around to help you

31

Tentative office hours schedules
• Locations: TBD.

• See the updated info on the webpage

• More office hours around Tuesday (hws due), but good to start early!

32

Projects from past years
• RA: next-generation relational algebra interpreter
• You may get to try it out for Homework #1!

• Managing tent shifts and schedules!
• Tutor-tutee matching
• What’s in my fridge and what can I cook?
• Hearsay: manage your own musics
• Dining at Duke (and deliver meals to students)
• National Parklopedia: a website to find information

about national parks

• More examples later - but we expect you to be
creative with a new idea!

33

Relational Data Model

34

Let’s get started!

What is a good model to store data?
Tree? Nested data? Graph?

(just) Tables!

Edgar F. Codd (1923-2003)

• Pilot in the Royal Air Force in WW2
• Inventor of the relational model

and algebra while at IBM
• Turing Award, 1981

35

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg

RDBMS = Relational DBMS

The famous “Beers” database
36

Bars
Each has an address

Drinkers
Each has an address

Beers
Each has a brewer

Drinkers Frequent Bars
“X” times a week

Bars Serve Beers
At price “Y”

Drinkers Likes Beers

(Later in ER diagram – how to
design a relational database)

“Beers” as a Relational Database
37

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

See online database for more tuples

Bar

Beer

Drinker

Likes

Frequents

Serves

Relational data model
• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)

• Set-valued attributes are not allowed

• Each relation contains a “set” of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed (Two tuples are duplicates if they

agree on all attributes)
• Ordering of rows doesn’t matter (even though output is

always in some order)

• However, SQL supports “bag”
or duplicate tuples (why?)

FSimplicity is a virtue
• not a weakness!

38

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Schema vs. instance
• Schema

• Beer (name string, brewer string)
• Serves (bar string, beer string, price float)
• Frequents (drinker string, bar string, times_a_week int)

• Instance
• Actual tuples or records

39

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2
Beer

Frequents

Serves

FCompare to types vs. collections of
objects of these types in a programming
language

SQL: Querying a RDBMS
• SQL: Structured Query Language

• Pronounced “S-Q-L” or “sequel”
• The standard query language supported by most DBMS
• First developed at IBM System R
• Follows ANSI standards

40

SQL is Declarative:

Programmer specifies what answers a query should return,
but not how the query is executed

DBMS picks the best execution strategy based on availability of indexes,
data/workload characteristics, etc.
FProvides physical data independence

Not a “Procedural” or “Operational” language like C++, Java, Python

Basic queries: SFW statement

• SELECT 𝐴", 𝐴#, …, 𝐴$
FROM 𝑅", 𝑅#, …, 𝑅&
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

• SELECT, FROM, WHERE are often referred to as
SELECT, FROM, WHERE “clauses”

41

Example: reading a table

• SELECT *
FROM Serves

• Single-table query
• WHERE clause is optional
• * is a short hand for “all columns”

42

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Example: selecting few rows
• SELECT beer AS mybeer

FROM Serves
WHERE price < 2.75

• SELECT beer
FROM Serves
WHERE bar = ‘The Edge’

43

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

• SELECT list can contain expressions
Can also use built-in functions such as SUBSTR, ABS, etc.

• String literals (case sensitive) are enclosed in single quotes
• “AS” is optional
• Do not want duplicates? Write SELECT DISTINCT beer …

What does these return?

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

• Which tables do we need?

44

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

45

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge
108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

Bar

Beer

Drinker

Likes

Frequents

Which tables
do we need?

How do we
combine them?

Example: Join
• Find addresses of all bars that ‘Dan’ frequents

• SELECT B.address
FROM Bar B, Frequents F
WHERE B.name = F.bar

AND F.drinker = ‘Dan’

• Okay to omit table_name in
table_name.column_name
if column_name is unique

• Can use “Aliases” for
convenience
• “Bar as B” or “Bar B”

46

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Bar

Frequents

Semantics of SFW
• SELECT 𝐸", 𝐸#, …, 𝐸$

FROM 𝑅", 𝑅#, …, 𝑅&
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
• For each 𝑡" in 𝑅":

For each 𝑡# in 𝑅#: … …
For each 𝑡& in 𝑅&:

If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡", 𝑡#, …, 𝑡&:

Compute and output 𝐸", 𝐸#, …, 𝐸$ as a row

47

1. Apply “FROM”
Form cross-product of R1, .., Rm

2. Apply “WHERE”
Only consider satisfying rows

3. Apply “SELECT”
Output the desired columns

Step 1: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is
outputs!

48

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan Satisfaction 2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan The Edge 1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Form Cross product of two relations

Step 2: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is
outputs!

49

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan Satisfaction 2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan The Edge 1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Discard rows that do not satisfy WHERE condition

Step 3: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is
outputs!

50

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben Satisfaction 2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan Satisfaction 2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan The Edge 1

Satisfaction 905 W.
Main Street

Dan Satisfaction 2

Output the “address” output of rows that survived

Final output: Illustration of Semantics of
SFW
• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is

outputs!

51

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

address

108 Morris
Street

905 W.
Main Street

Output the “address” output of rows that survived

Try some SQL queries yourself on
pgweb!

(See how to access the pgweb
interface for a small “Beers” database
on the slides posted on the course website)

52

Next: semantics of SFW statements in SQL

Announcements (Tue, 01/09)

• You should be on Sakai, Piazza, Gradescope
• If you are not there or recently enrolled, please contact

the instructor

• You will receive instructions on installing the VM
• Please follow Piazza posts, all notifications will be

posted there and you should receive emails right away

• First homework to be released on next class
Tuesday 01/14, due in a week
• No in-class quiz or labs unless explicitly announced in the

class before (and posted on Piazza)

53

