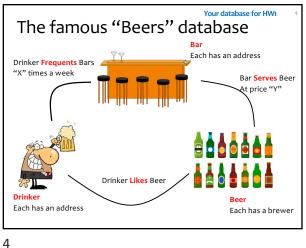
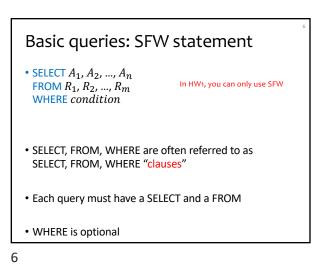
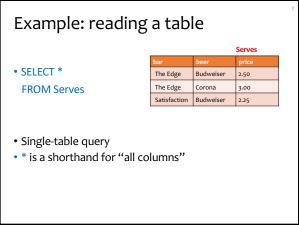

Announcements (Tue. Jan. 14)


- You should be on Piazza and Gradescope
 Otherwise, let the instructor know after class
- HW1 will be posted after class, due next Tuesday 11:59 pm
- Instant feedback, multiple submissions allowed until correct!
 - 5% / hour late submission penalty
- Use pgweb from course website to try your queries on small Beers dataset
- If you join the class after Tuesday 01/14, let the instructor know
- Office hours posted on course website • There is at least one everyday except Saturday


2



Example: some columns and DISTINCT

The Edge

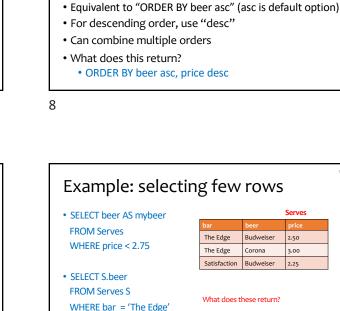
The Edge

Budweiser

Corona

Satisfaction Budweiser

2.50


3.00

2.25

• SELECT beer

FROM Serves

SELECT list can contain expressions

• LIKE matches a string against a pattern

NOT EQUAL TO: Use <>

10

Example: ORDER BY

The Edge

The Edge

Satisfaction

Budweise

Corona

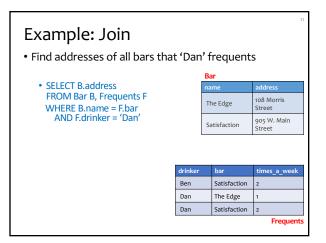
Budweiser

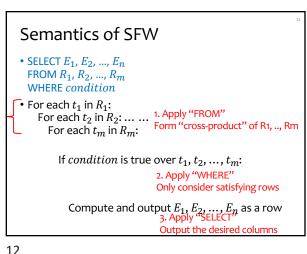
2.50

3.00

2.25

• SELECT *

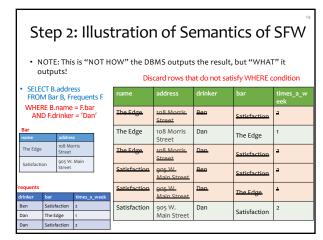

FROM Serves

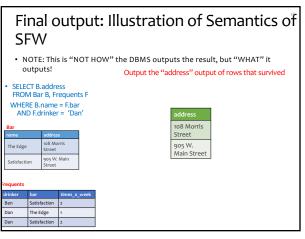

ORDER BY beer

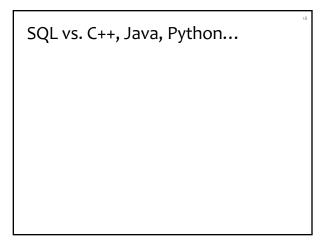
Returns a bag

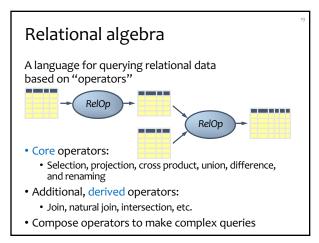
9

Can also use built-in functions such as SUBSTR, ABS, etc.

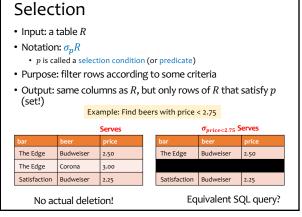

% matches any sequence of zero or more characters

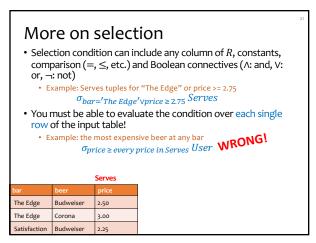

11

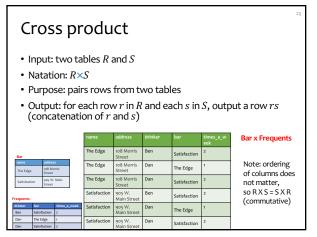

Step 1: Illustration of Semantics of SFW							
 NOTE: This is "NOT HOW" the DBMS outputs the result, but "WHAT" it outputs! Form a "Cross product" of two relations 							
SELECT B.address FROM Bar B, Frequents F			name	address	drinker	bar	times_a_w eek
WHERE B.name = F.bar AND F.drinker = 'Dan'		The Edge	108 Morris Street	Ben	Satisfaction	2	
Bar name address			The Edge	108 Morris Street	Dan	The Edge	1
	The Edge 108 Morris Street Satisfaction 905 W. Main Street		The Edge	108 Morris Street	Dan	Satisfaction	2
Satisfacti			Satisfaction	905 W. Main Street	Ben	Satisfaction	2
requents drinker	bar	times_a_week	Satisfaction	905 W. Main Street	Dan	The Edge	1
Ben Dan	Satisfaction The Edge	1	Satisfaction	905 W. Main Street	Dan	Satisfaction	2
Dan	Satisfaction	2]				

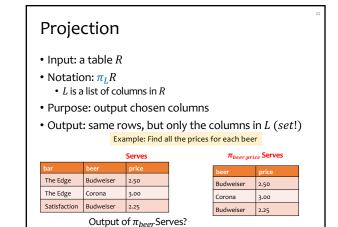

• NOTE: This is "NOT HOW" the DBMS outputs the result, but "WHAT" it outputs! Output the "address" output of rows that survived						
 SELECT B.ad FROM Bar B 	dress , Frequents F	name	address	drinker	bar	times_a_w eek
WHERE B.na AND F.drin	me = F.bar Iker = 'Dan'	<u>The Edge</u>	108 Morris. Street	Ben	Satisfaction	2
Bar name address		The Edge	108 Morris Street	Dan	The Edge	1
The Edge 108 Morris Street Satisfaction 905 W. Main Street		The Edge	108 Morris. Street	Dan.	Satisfaction	2
		Satisfaction	<u>905 W.</u> Main Street	Ben	Satisfaction	2
requents drinker bar	times a week	Satisfaction	<u>905 W.</u> Main Street	Dan.	The Edge	1
Ben Satisfacti Dan The Edge	on 2	Satisfaction	905 W. Main Street	Dan	Satisfaction	2
Dan Satisfacti	on 2					
15						

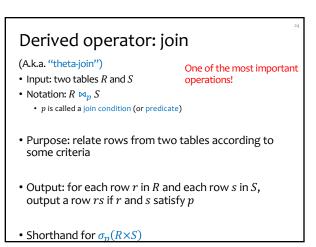
SQL vs. C++, Java, Python...

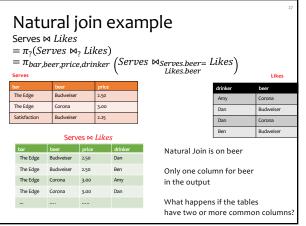











Join example

Ambiguous attribute? Use Bar.name

• Extend Frequents relation with addresses of the bars Frequents ⋈_{bar=name} Bar

L	name		add	lress	name	address	drinker	bar	times_a_w
	The Edg	e 108		Morris	21	108 Morris	Ben		eek
l	Satisfac	tion	905	W. Main	The Edge	Street	Ken	Satisfaction	2
	Street		The Edge	108 Morris Street	Dan	The Edge	1		
L	Frequents drinker bar times a week			times_a_week	The Edge	108 Morris. Street	<u>Dan</u>	Satisfaction	2
	Ben	Satisfaction The Edge		2	Satisfaction	905 W. Main Street	Ben	Satisfaction	2
L	Dan			1					
P	Dan Satisfaction 2			2	Satisfaction	<u>905 W.</u> Main Street	<u>Dan</u>	The Edge	1
					Satisfaction	905 W. Main Street	Dan	Satisfaction	2

25

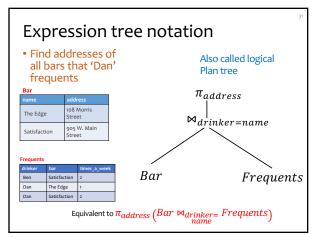
27

Difference

- Input: two tables R and S
- Notation: R S
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not in S
 - Example on board

Derived operator: natural join

- Input: two tables R and S
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality between identically named columns
 - Eliminate one copy of identically named columns
- Shorthand for $\pi_L(R \bowtie_p S)$, where
 - p equates each pair of columns common to R and S
 - *L* is the union of column names from *R* and *S* (with duplicate columns removed)


26

Union Input: two tables R and S Notation: R ∪ S R and S must have identical schema Output: Has the same schema as R and S Contains all rows in R and all rows in S (with duplicate rows removed) Example on board

28

Derived operator: intersection Input: two tables *R* and *S*Notation: *R* ∩ *S R* and *S* must have identical schema Output: Has the same schema as *R* and *S*Contains all rows that are in both *R* and *S*

• How can you write it using other operators?

Renaming

- Input: a table R
- Notation: $\rho_S R$, $\rho_{(A_1,A_2,...)}R$, or $\rho_{S(A_1,A_2,...)}R$
- Purpose: "rename" a table and/or its columns
- Output: a table with the same rows as R, but called
- differently
- Used to
 - Avoid confusion caused by identical column names
 - Create identical column names for natural joins
- As with all other relational operators, it doesn't modify the database
 - · Think of the renamed table as a copy of the original

33

Summary of derived operators

- Join: $R \bowtie_p S$
- Natural join: $R \bowtie S$
- Intersection: $R \cap S$
- Many more

• Semijoin, anti-semijoin, quotient, ...

who frequent both "The Edge" and "Satisfaction" The Edge Dan Satisfaction Dar

Using the same relation multiple

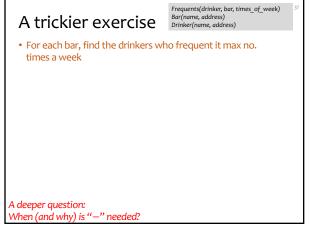
Satisfaction 2

32

times

• Find drinkers

Summary of core operators

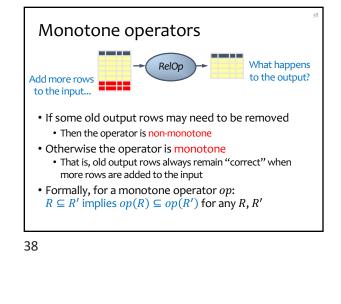

- Selection: $\sigma_p R$
- Projection: $\pi_L R$
- Cross product: R×S
- Union: *R* ∪ *S*
- Difference: R S
- Renaming: ρ_{S(A1,A2,...)}R
 Does not really add "processing" power

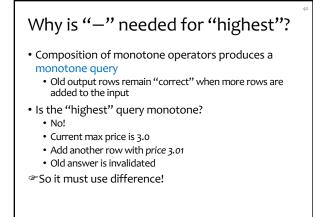
34

Exercise

Frequents(drinker, bar, times_of_week) Bar(name, address) Drinker(name, address)

• Bars that drinkers in address "300 N. Duke Street" do not frequent





• Selection: $\sigma_p R$	Monotone		
• Projection: $\pi_L R$	Monotone		
• Cross product: R×S	Monotone		
• Join: $R \bowtie_p S$	Monotone		
• Natural join: $R \bowtie S$	Monotone		
• Union: <i>R</i> ∪ <i>S</i>	Monotone		
• Difference: <i>R</i> – <i>S</i>	Monotone w.r.t. <i>R</i> ; non-monotone w.r.t <i>S</i>		
• Intersection: $R \cap S$	Monotone		

39

40

Extensions to relational algebra

- Duplicate handling ("bag algebra")
- Grouping and aggregation

```
• "Extension" (or "extended projection") to allow new column values to be computed
```