
Relational Database Design:
E/R-Relational Translation

Introduction to Databases
CompSci 316 Spring 2020

Announcements (Thu. Jan. 30)
• HW2/Lab1 due tonight (Thurs, Jan 30, 11:59 pm)
• HW3 Q1-Q2 posted
• Q3-Q5 to be posted next week after the material is covered

in class
• Many parts, start early!

• Please form your groups by next Thursday Feb 6!
• So that we can help you find a group if needed well before

MS1 is due
• Project formation spreadsheet shared
• 5 members for standard projects please! (otherwise we may

have to shuffling later, better if you do it yourself)
• If you want to do an open project, let me know asap

2

Announcements – contd. (Thu. Jan. 30)

• HW extension requests (See the course policy)
• We cannot accommodate requests for “I need more time” to be

fair to all
• For unforeseen situations not in our control like medical reasons,

you must submit an incapacitation form and copy your academic
dean while requesting an extension and mention the extra time you
need (typically 1-2 days).

• Make sure that you have an email from me accepting the extension
request and specifying the deadline.

• That deadline is final for you and late submissions with penalty do
not apply

• Be careful as the next hw would be posted

3

Database design steps: review

• Understand the real-world domain being modeled
• Specify it using a database design model (e.g., E/R)
• Translate specification to the data model of DBMS

(e.g., relational)
• Create DBMS schema

4

You designed an ER digram

5

Translate it to a Relational Database

Trains StopsAt Stations

name

address

number

E/L?

engineer

E/L? time

Train (number, engineer, type)
Station (name, address, type)
TrainStop (train_number, station_name, time)

Today

E/R model: review

• Entity sets
• Keys
• Weak entity sets

• Relationship sets
• Attributes on relationships
• Multiplicity
• Roles
• Binary versus 𝑛-ary relationships

• Modeling 𝑛-ary relationships with weak entity sets and binary
relationships

• ISA relationships

6

Translating entity sets

• An entity set translates directly to a table
• Attributes → columns
• Key attributes → key columns

7

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

User (uid, name) Group (gid, name)

Translating weak entity sets

• Remember the “borrowed” key attributes
• Watch out for attribute name conflicts

8

Rooms In Buildings
name

year

number

capacity

In

Seats
number

L/R?
Building (name, year)

Room (building_name, room_number, capacity)
Seat (building_name, room_number, seat_number, left_or_right)

Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns
• Attributes of the relationship set (if any) → columns
• Multiplicity of the relationship set determines the key of

the table

9

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

Member (uid, gid, fromDate)

How do the keys change if you have arrow to Users, Groups, or both?

More examples
10

Users IsMemberOf

member

initiator

Groups

Users IsParentOf

parent

child

Parent (parent_uid, child_uid)

Member (uid, initiator_uid, gid)

Translating double diamonds?

• Recall that a double-diamond (supporting)
relationship set connects a weak entity set to
another entity set
• No need to translate because the relationship is

implicit in the weak entity set’s translation

11

Rooms In Buildings
name

year

number

capacity

In

Seats
number

L/R?

RoomInBuilding
(room_building_name, room_number,

building_name)
is subsumed by
Room (building_name, room_number, capacity)

Translating subclasses & ISA
12

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Translating subclasses & ISA: approach 1

• Entity-in-all-superclasses approach (“E/R style”)
• An entity is represented in the table for each subclass to

which it belongs
• A table includes only the attributes directly attached to

the corresponding entity set, plus the inherited key

13

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)
PaidUser (uid, avatar)

〈142, Bart〉
〈456, Ralph〉

〈456, J〉

∈

∈

Translating subclasses & ISA: approach 2

• Entity-in-most-specific-class approach (“OO style”)
• An entity is only represented in one table (the most

specific entity set to which the entity belongs)
• A table includes the attributes attached to the

corresponding entity set, plus all inherited attributes

14

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)
PaidUser (uid, name, avatar)

〈142, Bart〉

〈456, Ralph, J〉

∈

∈

Translating subclasses & ISA: approach 3

• All-entities-in-one-table approach (“NULL style”)
• One relation for the root entity set, with all attributes found in

the network of subclasses (plus a “type” attribute when
needed)

• Use a special NULL value in columns that are not relevant for a
particular entity

15

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name, avatar)
Member (uid, gid, from_date)

〈142, Bart , NULL〉
〈456, Ralph, J〉

∈

Comparison of three approaches

• Entity-in-all-superclasses
• User (uid, name), PaidUser (uid, avatar)
• Pro:
• Con:

• Entity-in-most-specific-class
• User (uid, name), PaidUser (uid, name, avatar)
• Pro:
• Con:

• All-entities-in-one-table
• User (uid, [type,]name, avatar)
• Pro:
• Con:

16

All users are found in one table
Attributes of paid users are scattered in different tables

All attributes of paid users are found in one table
Users are scattered in different tables

Everything is in one table
Lots of NULL’s; complicated if class hierarchy is complex

17

• Design a database consistent with the following:
• A station has a unique name and an address, and is

either an express station or a local station
• A train has a unique number and an engineer, and is

either an express train or a local train
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times

during a day
• Train schedules are the same everyday

• Draw the ER diagram and translate into relational
model

A complete example

A complete example: ER diagram
18

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Why no double diamond?

Train no. and time uniquely determine
the stop

Next, Relational Design!

A complete example: ER diagram
19

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Train (number, engineer)
LocalTrain (number)
ExpressTrain (number)

Station (name, address)
LocalStation (name)
ExpressStation (name)

LocalTrainStop (local_train_number, time)

ExpressTrainStop (express_train_number, time)
LocalTrainStopsAtStation (local_train_number, time, station_name)

ExpressTrainStopsAtStation (express_train_number, time,
express_station_name)

merge

merge

Simplifications and refinements

• 10 to 8 relations
Train (number, engineer), LocalTrain (number), ExpressTrain (number)

Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local_train_number, station_name, time)
ExpressTrainStop (express_train_number, express_station_name, time)

• Eliminate LocalTrain table
• Redundant: can be computed as

𝜋'()*+, 𝑇𝑟𝑎𝑖𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑇𝑟𝑎𝑖𝑛
• Slightly harder to check that local_train_number is

indeed a local train number
• Eliminate LocalStation table
• It can be computed as 𝜋'()*+, 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑆𝑡𝑎𝑡𝑖𝑜𝑛

• 8 to 6 relations, still 6 (and more work for queries)!

20

An alternative design
Train (number, engineer, type)

Station (name, address, type)

TrainStop (train_number, station_name, time)

• Encode the type of train/station as a column rather than
creating subclasses
• What about the following constraints?

• Type must be either “local” or “express”
• Express trains only stop at express stations
FThey can be expressed/declared explicitly as database constraints in

SQL (we will see soon)

• Arguably a better design because it is simpler!

21

Trains StopsAt Stations

name

address

number

E/L?

engineer

E/L? time

Not a good ER diagram, but giving
a simpler design, with more taks
for DBMS/SQL

22

Warning: mechanical translation procedures given in this lecture are
no substitute for your own judgment!
What is a “Good” design often depends on your requirements, expected actions, and datasets

Design principles

• KISS
• Keep It Simple, Stupid

• Avoid redundancy
• Redundancy wastes space, complicates modifications,

promotes inconsistency

• Capture essential constraints, but don’t introduce
unnecessary restrictions
• Use your common sense

23

http://ungenius.files.wordpress.com/2010/03/thehomer.jpg

POOR DESIGN!

Quick clarifications: RA questions
• What is “some”?

• At least one
• e.g., Drinkers frequent some bars that serve beer X
• = Drinker D in the answer can frequent bar B1, B2, B3. At least one of

them should serve X. It is okay if other bars serve X too.

• What is “only”?
• E.g., Drinkers frequent only bars that serve beer X
• = If drinker D in the answer frequents a bar B, then B serves X

• What is “every”?
• E.g., Drinkers frequent every bars that serve beer X
• = If bar B serves beer X, then drinker D in the answer frequents B.

24

