(More) SQL
Introduction to Databases
CompSci 316 Spring 2020

? DUKE
COMPUTER SCIENCE

Announcements (Tue. Feb. 4)

* HW3 posted (all questions now)
* Due dates: Q1-Q3: Tuesday Feb 1111:59 pm
* Q4-Qs: Thursday Feb 13 11:59 pm
* Many parts, keep working onit!

* Please form your groups by this Thursday Feb 6

* So that we can help you find a group if needed well before
MS1is due

* Project formation spreadsheet shared

* 5 members for standard projects please! (otherwise we may
have to shuffling later, better if you do it yourself)

* If you want to do an open project, let me know asap

1

Recap: Basic SQL from Lecture 1-2

* Find addresses of all bars that ‘Dan’ frequents

Bar
" PROM Bar B, Fre
FROM Bar B, Frequents F .
WHERE B.name = F.bar The Edge 108 Morris
Street
AND F.drinker = ‘Dan’

SQL set and bag operations

* UNION, EXCEPT, INTERSECT

* Set semantics
« Duplicates in input tables, if any, are first eliminated

* Duplicates in result are also eliminated (for UNION)
* Exactly like set U, —, and n in relational algebra

* UNION ALL, EXCEPT ALL, INTERSECT ALL
* Bag semantics

* Think of each row as having an implicit count (the
number of times it appears in the table)

* Bag union: sum up the counts from two tables
* Bag difference: proper-subtract the two counts
* Bag intersection: take the minimum of the two counts

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

* (SELECT uid1 FROM Poke)
EXCEPT What do these queries return?

(SELECT uid2 FROM Poke);

* (SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

q g 905 W. Main
Satisfaction Street
We discussed
¢ SELECT-FROM-WHERE
* DISTINCT drinker bar times_a_week
* ORDER BY Ben Satisfaction |2
* Bag vs. Set semantics (why bag?) | pan TheEdge |1
* Semantic of SQL evaluation (?) Dan Satisfaction |2
Frequents
Examples of bag operations
Bagl Bag2
apple apple
apple orange
orange orange
(SELECT * FROM Bag1) (SELECT * FROM Bag1) (SELECT * FROM Bag1)
UNION ALL EXCEPT ALL INTERSECT ALL
(SELECT * FROM Bag2); (SELECT * FROM Bag2); (SELECT * FROM Bag2);

2/4/20

< Next: how to “nest” SQL queries
and write sub-queries?

Table subqueries

‘ Poke (uid1, uid2, timestamp) ‘

* Use query result as a table
* Inset and bag operations, FROM clauses, etc.
* Away to “nest” queries

» Example: names of users who poked others more
than others poked them

* SELECT DISTINCT name
FROM User,
((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AST
WHERE User.uid = T.uid;

‘ User(uid, name, age, pop) ‘

IN subqueries

* x IN (subquery) checks if x is in the result of
subquery

* Example: users (all columns) at the same age as
(some) Bart

Let’s first try without sub-queries

You can use NOT IN too

‘ User(uid, name, age, pop) ‘

Semantics of subqueries

o SELECT * Remember SQL evaluation!
FROM User AS u FROM-WHERE-SELECT

WHERE EXISTS (SELECT * FROM User
WHERE name = 'Bart'
AND age = u.age);

* For each row uin User
* Evaluate the subquery with the value of u.age
* If the result of the subquery is not empty, output u.*
* The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)

11

8
EXISTS subqueries [usertid name, age por) |
* EXISTS (subquery) checks if the result of subquery
is non-empty
* Example: users at the same age as (some) Bart
* This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries
* How about the previous one with “IN”?
‘ You can use NOT EXISTS too
10
« ””
WITH” clause - very useful!
* You will find “WITH” clause very useful!
WITH Temp1l AS
(SELECT),
Temp2 AS
(SELECT)
SELECT X, Y
FROM TEMP1, TEMP2
* Can simplify complex nested queries
Example: users at the same age as (some) Bart
WITH BartAge AS WITH clause
(SELECT age not really needed
FROM User for this query!
WHERE name = ‘Bart’)
SELECT U.uid, U.name, U.age, U.pop
FROM User U, BartAge B
WHERE U.age = B.age
12

2/4/20

Scalar subqueries

* A query that returns a single row can be used as a
value in WHERE, SELECT, etc.

* Example: users at the same age as Bart
* SELECT *
FROM User
WHERE age = (SELECT age
FROM User
WHERE name = 'Bart');
* Runtime error if subquery returns more than one row
* Under what condition will this error never occur?
* What if the subquery returns no rows?

« The answer is treated as a special value NULL, and the
comparison with NULL will fail (later)

What’s Bart’s age?

Scoping rule of subqueries

* To find out which table a column belongs to

* Start with the immediately surrounding query
* If not found, look in the one surrounding that; repeat if
necessary

* Use table_name.column_name notation and AS
(renaming) to avoid confusion

13

14

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Another example

—
* SELECT * FROM User u

WHERE EXISTS —
(SELECT * FROM Member m
WHERE& u.uid
AND EXISTS —

(SELECTber
WHERE uid = u.uid

AND gid <> m.gid));

» What does this query return?

Read this slide yourself
Example in class (next slide)

Quantified subqueries

* A quantified subquery can be used syntactically as a
value in a WHERE condition

* Universal quantification (for all):
... WHERE x op ALL(subquery) ...
* True iff for all t in the result of subquery, x op t

* Existential quantification (exists):
... WHERE x op ANY(subquery) ...
* True iff there exists some t in subquery result such that
xopt
= Beware
* In common parlance, “any” and “all” seem to be synonyms
* In SQL, ANY really means “some”

15

16

Examples of quantified subqueries
User(uid, name, pop)

Member(uid, gid)

) i 24
Which users are the most popular? Group(aid, neme)

* SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

* SELECT *
FROM User
WHERE NOT
(pop < ANY(SELECT pop FROM User);

@ Use NOT to negate a condition

17

Practice queries — check yourself

More ways to get the most popular

User(uid, name, pop)
Member(uid, gid)

* Which users are the most popular? |
Group(gid, name)

* SELECT *
FROM User AS u
WHERE NOT EXISTS
(SELECT * FROM User
WHERE pop > u.pop);

* SELECT * FROM User
WHERE uid NOT IN
(SELECT ul.uid
FROM User AS ul, User AS u2
WHERE ul.pop < u2.pop);

18

2/4/20

2/4/20

‘ User(uid, name, age, pop) ‘ o

Aggregates

* Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX
= Next: aggregates, group-by,

haVing! * Example: number of users under 18, and their
average popularity

* SELECT COUNT(*), AVG(pop)
FROM User
WHERE age < 18;

* COUNT(*) counts the number of rows

19 20

Aggregates with DISTINCT Grouping [usertu, name, sge, por)

* Example: How many users are in some group? * SELECT ... FROM ... WHERE ...
GROUP BY /ist of columns,
* SELECT COUNT(DISTINCT uid)

FROM Member; .
» Example: compute average popularity for
is equivalent to: each age group
* SELECT age, AVG(pop)
FROM User
GROUP BY age;
* SELECT COUNT(*) ¢
FROM (SELECT DISTINCT uid FROM Member);
21 22
23 ‘ User(uid, name, age, pop) ‘ 24
Semantics of GROUP BY «.....op Example of computing GROUP BY
On the next slide first
SELECT ... FROM ... WHERE ... GROUP BY ...; SELECT age, AVG(pop) FROM User GROUP BY age;
. X o
Compute FROM () ???? Compute GROUP BY: group
+ Compute WHERE (o) = is 5 oz rows according to the values
 Compute GROUP BY: group rows according to the 123 Mihouse 10 02 of GROUP BY columns
values of GROUP BY columns wzCH [RPh RS [id |name |age |pop |
+ Compute SELECT for each group () c SELECT ' 142 Bart 0 09
* For aggregation functions with DISTINCT inputs, first fsrne]ggﬁe rou ;5 :f""m"se ;0 2’;
eliminate duplicates within the group group = ;
age | avg pop | — 456 Ralph 8 03
“ Number of groups = ———=
number of rows in the final output 3 o
23 24

‘ User(uid, name, age, pop) ‘

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

Group all rows
into one group

142 Bart 10 09 142 Bart 10 09

Aggregate over
the whole group

avg_pop
857 Lisa 8 0.7 857 Lisa 8 0.7 » 0.525
123 Milhouse 10 0.2 123 Milhouse 10 0.2
456 Ralph 8 0.3 456 Ralph 8 03

25

Examples of invalid queries

Which one is correct?

» SELECT uid, age
FROM User GROUP BY age;

* SELECT uid, MAX(pop) FROM User;

27

HAVING examples

* List the average popularity for each age group with
more than a hundred users
» SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*) > 100;
* Can be written using WHERE and table sub-queries

* Find average popularity for each age group over 10
* SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING age > 10;

* Can be written using WHERE without table subqueries

29

Restriction on SELECT

« If a query uses aggregation/group by, then every
column referenced in SELECT must be either
* Aggregated, or
* AGROUP BY column

Why?

Examples on blackboard

26

HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)
¢ SELECT ... FROM ... WHERE ... GROUP BY ...
HAVING condition;
+ Compute FROM (X)
+ Compute WHERE (o)

* Compute GROUP BY: group rows according to the values
of GROUP BY columns

* Compute HAVING (another o over the groups)
* Compute SELECT (r) for each group that passes HAVING

28

< Next: incomplete information and
nulls!

30

2/4/20

Incomplete information

* Example: User (uid, name, age, pop)

* Value unknown
* We do not know Nelson’s age

* Value not applicable
* Suppose pop is based on interactions with others on our
social networking site
* Nelson is new to our site; what is his pop?

Solution 1

2/4/20

31

Solution 2

33

SQL’s solution

* A special value NULL

* For every domain
* Special rules for dealing with NULL’s

* Example: User (uid, name, age, pop)
* (789, “Nelson”, NULL, NULL)

35

32

Solution 3

34

Computing with NULL’s

* When we operate on a NULL and another value
(including another NULL) using +, —, etc., the result
is NULL

* Aggregate functions ignore NULL, except COUNT(*)
(since it counts rows)

36

Three-valued logic

« TRUE =1, FALSE = 0, UNKNOWN = 0.5

* x AND y = min(x, y)

* x OR y = max(x, y)

*NOTx=1-—x

* When we compare a NULL with another value

is UNKNOWN

* WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
* UNKNOWN is not enough

(including another NULL) using =, >, etc., the result

37

Another problem

* Example: Who has NULL pop values?
* SELECT * FROM User WHERE pop = NULL;
* Does not work; never returns anything
« (SELECT * FROM User)
EXCEPT ALL
(SELECT * FROM User WHERE pop = pop);
* Works, but ugly
* SQL introduced special, built-in predicates
ISNULLand IS NOT NULL
+ SELECT * FROM User WHERE pop IS NULL;

39

Outerjoin flavors and definitions

+ Afull outerjoin between R and S (denoted R < 5)
includes all rows in the result of R x S, plus

* “Dangling” R rows (those that do not join with any §
rows) padded with NULL’s for S’s columns

* “Dangling” S rows (those that do not join with any R
rows) padded with NULL’s for R’s columns
* Aleft outerjoin (R 24 .5) includes rows in R 4 S plus
dangling R rows padded with NULL’s

* Aright outerjoin (R < 5) includes rows in R > S
plus dangling S rows padded with NULL’s

Unfortunate consequences

¢ SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT(*) FROM User;
* Not equivalent
* Although AVG(pop)=SUM(pop)/COUNT (pop) still
* SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;
* Not equivalent

@ Be careful: NULL breaks many equivalences

38

Outerjoin motivation
* Example: a master group membership list

* SELECT g.gid, g.name AS gname,
u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

* What if a group is empty?
* It may be reasonable for the master list to include empty
groups as well
* For these groups, uid and uname columns would be NULL

40

41

Outerjoin examples

Group > Member abc Bookclub 857
gov Student Government 123
gov Student Government 857
Group dps Dead Putting Society 142
g _loame k. Unied Nular Worers N
abc BookClub
gov Student Government
T e Grou s Member e o
gov Student Government 123
gov Student Government 857
Member dps Dead Putting Society 142
uid | gid | foo NULL 789
142 dps
25 gov [gid Joame ________ludg |
857 abc Group > Member apc BookClub 857
857 gov gov Student Government 123
789 foo gov Student Government 857
dps Dead Putting Society 142
nuk United Nuclear Workers NULL
foo NULL 789

42

2/4/20

Outerjoin syntax

e SELECT * FROM Group Member
Group.gid = Member.gid;
~ Group > Member

Group.gid=Member.gid

e SELECT * FROM Group Member
Group.gid = Member.gid;
~ Group o _ Member
Group.gid=Member.gid

* SELECT * FROM Grou Member

Group.giJ)= Member.gid;

~ Group > ~ Member
Group.gid=Member.gid

@A similar construct exists for regular (“inner”) joins:

* SELECT * FROM Group Member
Group.gid = Member.gid;

@ These are rather than
* Return all columns in Group and Member

@ For natural joins, add keyword NATURAL; don’t use ON

& Next: how to create a table and
insert/delete rows?

43

Creating and dropping tables

* CREATE TABLE table name
(..., column_name column_type, ...);

* DROP TABLE table_name;,

* Examples

create table User(uid integer, name varchar(30),
age integer, pop float);

create table Group(gid char(10), name varchar(100));

create table Member(uid integer, gid char(10));

drop table Member;

drop table Group;

drop table User;

-- everything from -- to the end of line is ignored.

-- SQL is insensitive to white space

-- SQL is insensitive to case (e.g., ...Group... is

-- equivalent to ...GROUP...)

45

DELETE

* Delete everything from a table
* DELETE FROM Member;
* Delete according to a WHERE condition

Example: User 789 leaves Dead Putting Society
* DELETE FROM Member
WHERE uid = 789 AND gid = 'dps';
Example: Users under age 18 must be removed
from United Nuclear Workers

* DELETE FROM Member
WHERE uid IN (SELECT uid FROM User
WHERE age < 18)
AND gid = "nuk';

47

44

INSERT

¢ Insert one row

« INSERT INTO Member VALUES (789, 'dps);
* User 789 joins Dead Putting Society

* Insert the result of a query
* INSERT INTO Member
(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid
FROM Member
WHERE gid = 'dps'));

* Everybody joins Dead Putting Society!

46

UPDATE

* Example: User 142 changes name to “Barney”

* UPDATE User
SET name = 'Barney’
WHERE uid = 142;

* Example: We are all popular!
* UPDATE User
SET pop = (SELECT AVG(pop) FROM User);
* But won’t update of every row causes average pop to change?
@ Subquery is always computed over the old table

48

2/4/20

@& Next: constraints!

49

Types of SQL constraints

* NOT NULL

* Key

* Referential integrity (foreign key)
* General assertion

* Tuple- and attribute-based CHECK’s

51

Key declaration

* At most one PRIMARY KEY per table
* Typically implies a primary index
* Rows are stored inside the index, typically sorted by the
primary key value = best speedup for queries
* Any number of UNIQUE keys per table
* Typically implies a secondary index

* Pointers to rows are stored inside the index = less
speedup for queries

53

Constraints

* Restrictions on allowable data in a database

* In addition to the simple structure and type restrictions
imposed by the table definitions

* Declared as
* Enforced by the DBMS
* Why use constraints?
* Protect data integrity (catch errors)
» Tell the DBMS about the data (so it can optimize better)

50

NOT NULL constraint examples

* CREATE TABLE User
(uid INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INTEGER,
pop FLOAT);
* CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);
* CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL);

52

Key declaration examples

* CREATE TABLE User
(uid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,

twitterid VARCHAR(15) NOT NULL UNIQUE,
age INTEGER,

pop FLOAT);
¢ CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);
* CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,

PRIMARY KEY(uid, gid));
This form is required for multi-attribute keys

54

2/4/20

Referential integrity example

* Member.uid references User.uid
* If an uid appears in Member, it must appear in User

* Member.gid references Group.gid
* If a gid appears in Member, it must appear in Group

& That is, no “dangling pointers”

User Member Grou
Luid Jname 1. T .0 ea | Cgid | name |

142 Bart - —— 142 dps abc
123 Milhouse - 123 gov. gov
857 Lisa 4—_ 857 abc dps

456 Ralph 857 gov.
789 Nelson \ 456 abc
456

Referential integrity in SQL

* Referenced column(s) must be PRIMARY KEY
* Referencing column(s) form a FOREIGN KEY

* Example
* CREATE TABLE Member
(uid INTEGER NOT NULL
REFERENCES User(uid),
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

This form is useful for multi-attribute foreign keys

55

Enforcing referential integrity

Example: Member.uid references User.uid

* Insert or update a Member row so it refers to a non-
existent uid
* Reject
* Delete or update a User row whose uid is
referenced by some Member row

56

Deferred constraint checking

* No-chicken-no-egg problem
* CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
chair CHAR(30) NOT NULL
REFERENCES Prof(name));
CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
dept CHAR(20) NOT NULL
REFERENCES Dept(name));
* The first INSERT will always violate a constraint!

* Deferred constraint checking is necessary
* Check only at the end of a transaction
* Allowed in SQL as an option

* Curious how the schema was created in the first place?
* ALTER TABLE ADD CONSTRAINT (read the manual!)

57

General assertion

* CREATE ASSERTION assertion_name
CHECK assertion_condition,

* assertion_conditionis checked for each
modification that could potentially violate it

* Example: Member.uid references User.uid
* CREATE ASSERTION MemberUserRefIntegrity
CHECK (NOT EXISTS
(SELECT * FROM Member
WHERE uid NOT IN

(SELECT uid FROM User)));
@ In SQL3, but not all (perhaps no) DBMS supports it

58

Tuple- and attribute-based CHECK’s

* Associated with a single table

* Only checked when a tuple/attribute is
inserted/updated
* Reject if condition evaluates to FALSE
* TRUE and UNKNOWN are fine

* Examples:

» CREATE TABLE User(...
age INTEGER CHECK(age IS NULL OR age > 0),

« CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),
)

* Isit areferential integrity constraint?

59

* Not quite; not checked when User is modified

60

2/4/20

10

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set and bag operations
* Table expressions, subqueries
* Aggregation and grouping
* Ordering
* Outerjoins
* Modification
* INSERT/DELETE/UPDATE
* Constraints

& Next: triggers, views, indexes

2/4/20

11

