
2/4/20

1

(More) SQL
Introduction to Databases
CompSci 316 Spring 2020

1

Announcements (Tue. Feb. 4)
• HW3 posted (all questions now)
• Due dates: Q1-Q3: Tuesday Feb 11 11:59 pm
• Q4-Q5: Thursday Feb 13 11:59 pm
• Many parts, keep working on it!

• Please form your groups by this Thursday Feb 6
• So that we can help you find a group if needed well before

MS1 is due
• Project formation spreadsheet shared
• 5 members for standard projects please! (otherwise we may

have to shuffling later, better if you do it yourself)
• If you want to do an open project, let me know asap

2

2

Recap: Basic SQL from Lecture 1-2
• Find addresses of all bars that ‘Dan’ frequents

• SELECT B.address
FROM Bar B, Frequents F
WHERE B.name = F.bar

AND F.drinker = ‘Dan’

We discussed
• SELECT-FROM-WHERE
• DISTINCT
• ORDER BY
• Bag vs. Set semantics (why bag?)
• Semantic of SQL evaluation (?)

3

name address

The Edge 108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Bar

Frequents

3

SQL set and bag operations

• UNION, EXCEPT, INTERSECT
• Set semantics

• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

• Exactly like set ∪, −, and ∩ in relational algebra

• UNION ALL, EXCEPT ALL, INTERSECT ALL
• Bag semantics
• Think of each row as having an implicit count (the

number of times it appears in the table)
• Bag union: sum up the counts from two tables
• Bag difference: proper-subtract the two counts
• Bag intersection: take the minimum of the two counts

4

4

Examples of bag operations
5

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

5

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

• (SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

• (SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

6

What do these queries return?

6

2/4/20

2

FNext: how to “nest” SQL queries
and write sub-queries?

7

7

Table subqueries
• Use query result as a table
• In set and bag operations, FROM clauses, etc.
• A way to “nest” queries

• Example: names of users who poked others more
than others poked them

• SELECT DISTINCT name
FROM User,

((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AS T

WHERE User.uid = T.uid;

8

Poke (uid1, uid2, timestamp)

8

IN subqueries

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
• Example: users (all columns) at the same age as

(some) Bart

9

User(uid, name, age, pop)

Let’s first try without sub-queries

You can use NOT IN too

9

EXISTS subqueries

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty
• Example: users at the same age as (some) Bart

• This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

• How about the previous one with “IN”?

10

You can use NOT EXISTS too

User(uid, name, age, pop)

10

Semantics of subqueries

• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• For each row u in User
• Evaluate the subquery with the value of u.age
• If the result of the subquery is not empty, output u.*

• The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)

11

Remember SQL evaluation!
FROM-WHERE-SELECT

User(uid, name, age, pop)

11

“WITH” clause – very useful!
• You will find “WITH” clause very useful!

WITH Temp1 AS
(SELECT ….. ..),
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can simplify complex nested queries

12

Example: users at the same age as (some) Bart
WITH BartAge AS

(SELECT age
FROM User
WHERE name = ‘Bart’)

SELECT U.uid, U.name, U.age, U.pop
FROM User U, BartAge B
WHERE U.age = B.age

WITH clause
not really needed
for this query!

12

2/4/20

3

Scalar subqueries

• A query that returns a single row can be used as a
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart
• SELECT *

FROM User
WHERE age = (SELECT age

FROM User
WHERE name = 'Bart');

• Runtime error if subquery returns more than one row
• Under what condition will this error never occur?

• What if the subquery returns no rows?
• The answer is treated as a special value NULL, and the

comparison with NULL will fail (later)

13

What’s Bart’s age?

13

Scoping rule of subqueries

• To find out which table a column belongs to
• Start with the immediately surrounding query
• If not found, look in the one surrounding that; repeat if

necessary

• Use table_name.column_name notation and AS
(renaming) to avoid confusion

14

14

• SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS

(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));

• What does this query return?

Another example
15User(uid, name, pop)

Member(uid, gid)
Group(gid, name)

15

Quantified subqueries

• A quantified subquery can be used syntactically as a
value in a WHERE condition
• Universal quantification (for all):

… WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
… WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that
𝑥 𝑜𝑝 𝑡

FBeware
• In common parlance, “any” and “all” seem to be synonyms
• In SQL, ANY really means “some”

16

Read this slide yourself
Example in class (next slide)

16

Examples of quantified subqueries

• Which users are the most popular?

• SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

• SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

FUse NOT to negate a condition

17

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

17

More ways to get the most popular

• Which users are the most popular?

• SELECT *
FROM User AS u
WHERE NOT EXISTS

(SELECT * FROM User
WHERE pop > u.pop);

• SELECT * FROM User
WHERE uid NOT IN

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

18

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Practice queries – check yourself

18

2/4/20

4

FNext: aggregates, group-by,
having!

19

19

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity

• SELECT COUNT(*), AVG(pop)
FROM User
WHERE age < 18;

• COUNT(*) counts the number of rows

20User(uid, name, age, pop)

20

Aggregates with DISTINCT
• Example: How many users are in some group?

• SELECT COUNT(DISTINCT uid)
FROM Member;

is equivalent to:

• SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

21Member(uid, gid)

21

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group
• SELECT age, AVG(pop)

FROM User
GROUP BY age;

22

User(uid, name, age, pop)

22

Semantics of GROUP BY
SELECT … FROM … WHERE … GROUP BY …;
• Compute FROM (×)
• Compute WHERE (𝜎)
• Compute GROUP BY: group rows according to the

values of GROUP BY columns
• Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group
FNumber of groups =

number of rows in the final output

23

See example
On the next slide first

23

Example of computing GROUP BY
SELECT age, AVG(pop) FROM User GROUP BY age;

24

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

User(uid, name, age, pop)

24

2/4/20

5

Aggregates with no GROUP BY
• An aggregate query with no GROUP BY clause =

all rows go into one group
SELECT AVG(pop) FROM User;

25

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

User(uid, name, age, pop)

25

Restriction on SELECT
• If a query uses aggregation/group by, then every

column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?

26

Examples on blackboard

26

Examples of invalid queries

• SELECT uid, age
FROM User GROUP BY age;

• SELECT uid, MAX(pop) FROM User;

27

Which one is correct?

27

HAVING
• Used to filter groups based on the group properties

(e.g., aggregate values, GROUP BY column values)
• SELECT … FROM … WHERE … GROUP BY …

HAVING 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏;
• Compute FROM (×)
• Compute WHERE (𝜎)
• Compute GROUP BY: group rows according to the values

of GROUP BY columns
• Compute HAVING (another 𝜎 over the groups)
• Compute SELECT (𝜋) for each group that passes HAVING

28

28

HAVING examples

• List the average popularity for each age group with
more than a hundred users
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING COUNT(*) > 100;
• Can be written using WHERE and table sub-queries

• Find average popularity for each age group over 10
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING age > 10;
• Can be written using WHERE without table subqueries

29

29

FNext: incomplete information and
nulls!

30

30

2/4/20

6

Incomplete information

• Example: User (uid, name, age, pop)
• Value unknown
• We do not know Nelson’s age

• Value not applicable
• Suppose pop is based on interactions with others on our

social networking site
• Nelson is new to our site; what is his pop?

31

31

Solution 1
32

http://www.90s411.com/images/y2k-cartoon.jpg

32

Solution 2
33

33

Solution 3
34

34

SQL’s solution

• A special value NULL
• For every domain
• Special rules for dealing with NULL’s

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

35

35

Computing with NULL’s

• When we operate on a NULL and another value
(including another NULL) using +, −, etc., the result
is NULL

• Aggregate functions ignore NULL, except COUNT(*)
(since it counts rows)

36

36

2/4/20

7

Three-valued logic

• TRUE = 1, FALSE = 0, UNKNOWN = 0.5
• 𝑥 AND 𝑦 = min(𝑥, 𝑦)
• 𝑥 OR 𝑦 = max(𝑥, 𝑦)
• NOT 𝑥 = 1 − 𝑥
• When we compare a NULL with another value

(including another NULL) using =, >, etc., the result
is UNKNOWN
• WHERE and HAVING clauses only select rows for

output if the condition evaluates to TRUE
• UNKNOWN is not enough

37

37

Unfortunate consequences

• SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT(*) FROM User;
• Not equivalent
• Although AVG(pop)=SUM(pop)/COUNT(pop) still

• SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;
• Not equivalent

FBe careful: NULL breaks many equivalences

38

38

Another problem

• Example: Who has NULL pop values?
• SELECT * FROM User WHERE pop = NULL;

• Does not work; never returns anything

• (SELECT * FROM User)
EXCEPT ALL
(SELECT * FROM User WHERE pop = pop);
• Works, but ugly

• SQL introduced special, built-in predicates
IS NULL and IS NOT NULL
• SELECT * FROM User WHERE pop IS NULL;

39

39

Outerjoin motivation

• Example: a master group membership list

• SELECT g.gid, g.name AS gname,
u.uid, u.name AS uname

FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

• What if a group is empty?
• It may be reasonable for the master list to include empty

groups as well
• For these groups, uid and uname columns would be NULL

40

40

Outerjoin flavors and definitions

• A full outerjoin between R and S (denoted 𝑅⟗𝑆)
includes all rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join with any 𝑆

rows) padded with NULL’s for 𝑆’s columns
• “Dangling” 𝑆 rows (those that do not join with any 𝑅

rows) padded with NULL’s for 𝑅’s columns
• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆 plus

dangling 𝑅 rows padded with NULL’s
• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈ 𝑆

plus dangling 𝑆 rows padded with NULL’s

41

41

Outerjoin examples
42

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

Group⟕ Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖ Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

foo NULL 789

Group⟗ Member

42

2/4/20

8

Outerjoin syntax
• SELECT * FROM Group LEFT OUTER JOIN Member

ON Group.gid = Member.gid;
≈ 𝐺𝑟𝑜𝑢𝑝 ⟕

VWXYZ.\]^_`abcaW.\]^
𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
VWXYZ.\]^_`abcaW.\]^

𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
VWXYZ.\]^_`abcaW.\]^

𝑀𝑒𝑚𝑏𝑒𝑟

☞A similar construct exists for regular (“inner”) joins:
• SELECT * FROM Group JOIN Member

ON Group.gid = Member.gid;

☞These are theta joins rather than natural joins
• Return all columns in Group and Member

☞For natural joins, add keyword NATURAL; don’t use ON

43

43

FNext: how to create a table and
insert/delete rows?

44

44

Creating and dropping tables

• CREATE TABLE table_name
(…, column_name column_type, …);
• DROP TABLE table_name;
• Examples

create table User(uid integer, name varchar(30),
age integer, pop float);

create table Group(gid char(10), name varchar(100));
create table Member(uid integer, gid char(10));
drop table Member;
drop table Group;
drop table User;
-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...Group... is
-- equivalent to ...GROUP...).

45

45

INSERT

• Insert one row
• INSERT INTO Member VALUES (789, 'dps');

• User 789 joins Dead Putting Society

• Insert the result of a query
• INSERT INTO Member

(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid

FROM Member
WHERE gid = 'dps'));

• Everybody joins Dead Putting Society!

46

46

DELETE
• Delete everything from a table
• DELETE FROM Member;

• Delete according to a WHERE condition
Example: User 789 leaves Dead Putting Society
• DELETE FROM Member

WHERE uid = 789 AND gid = 'dps';

Example: Users under age 18 must be removed
from United Nuclear Workers
• DELETE FROM Member

WHERE uid IN (SELECT uid FROM User
WHERE age < 18)

AND gid = 'nuk';

47

47

UPDATE
• Example: User 142 changes name to “Barney”
• UPDATE User

SET name = 'Barney'
WHERE uid = 142;

• Example: We are all popular!
• UPDATE User

SET pop = (SELECT AVG(pop) FROM User);
• But won’t update of every row causes average pop to change?
FSubquery is always computed over the old table

48

48

2/4/20

9

FNext: constraints!

49

49

Constraints

• Restrictions on allowable data in a database
• In addition to the simple structure and type restrictions

imposed by the table definitions
• Declared as part of the schema
• Enforced by the DBMS

• Why use constraints?
• Protect data integrity (catch errors)
• Tell the DBMS about the data (so it can optimize better)

50

50

Types of SQL constraints

• NOT NULL
• Key
• Referential integrity (foreign key)
• General assertion
• Tuple- and attribute-based CHECK’s

51

51

NOT NULL constraint examples

• CREATE TABLE User
(uid INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL);

52

52

Key declaration

• At most one PRIMARY KEY per table
• Typically implies a primary index
• Rows are stored inside the index, typically sorted by the

primary key value ⇒best speedup for queries
• Any number of UNIQUE keys per table
• Typically implies a secondary index
• Pointers to rows are stored inside the index ⇒ less

speedup for queries

53

53

Key declaration examples
• CREATE TABLE User

(uid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL UNIQUE,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid));

54

This form is required for multi-attribute keys

54

2/4/20

10

Referential integrity example

• Member.uid references User.uid
• If an uid appears in Member, it must appear in User

• Member.gid references Group.gid
• If a gid appears in Member, it must appear in Group

FThat is, no “dangling pointers”

55

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

55

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Referencing column(s) form a FOREIGN KEY
• Example
• CREATE TABLE Member

(uid INTEGER NOT NULL
REFERENCES User(uid),

gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

56

This form is useful for multi-attribute foreign keys

56

Enforcing referential integrity

Example: Member.uid references User.uid
• Insert or update a Member row so it refers to a non-

existent uid
• Reject

• Delete or update a User row whose uid is
referenced by some Member row

57

57

Deferred constraint checking
• No-chicken-no-egg problem

• CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
chair CHAR(30) NOT NULL

REFERENCES Prof(name));
CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
dept CHAR(20) NOT NULL

REFERENCES Dept(name));
• The first INSERT will always violate a constraint!

• Deferred constraint checking is necessary
• Check only at the end of a transaction
• Allowed in SQL as an option

• Curious how the schema was created in the first place?
• ALTER TABLE ADD CONSTRAINT (read the manual!)

58

58

General assertion

• CREATE ASSERTION 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
CHECK assertion_condition;
• assertion_condition is checked for each

modification that could potentially violate it
• Example: Member.uid references User.uid
• CREATE ASSERTION MemberUserRefIntegrity

CHECK (NOT EXISTS
(SELECT * FROM Member
WHERE uid NOT IN
(SELECT uid FROM User)));

FIn SQL3, but not all (perhaps no) DBMS supports it

59

59

Tuple- and attribute-based CHECK’s
60

• Associated with a single table
• Only checked when a tuple/attribute is

inserted/updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• Examples:
• CREATE TABLE User(...

age INTEGER CHECK(age IS NULL OR age > 0),
...);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),
...);
• Is it a referential integrity constraint?
• Not quite; not checked when User is modified

60

2/4/20

11

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set and bag operations
• Table expressions, subqueries
• Aggregation and grouping
• Ordering
• Outerjoins

• Modification
• INSERT/DELETE/UPDATE

• Constraints
FNext: triggers, views, indexes

61

61

