
(More) SQL
Introduction to Databases
CompSci 316 Spring 2020

Announcements (Tue. Feb. 4)
• HW3 posted (all questions now)
• Due dates: Q1-Q3: Tuesday Feb 11 11:59 pm
• Q4-Q5: Thursday Feb 13 11:59 pm
• Many parts, keep working on it!

• Please form your groups by this Thursday Feb 6
• So that we can help you find a group if needed well before

MS1 is due
• Project formation spreadsheet shared
• 5 members for standard projects please! (otherwise we may

have to shuffling later, better if you do it yourself)
• If you want to do an open project, let me know asap

2

Recap: Basic SQL from Lecture 1-2
• Find addresses of all bars that ‘Dan’ frequents

• SELECT B.address
FROM Bar B, Frequents F
WHERE B.name = F.bar

AND F.drinker = ‘Dan’

We discussed
• SELECT-FROM-WHERE
• DISTINCT
• ORDER BY
• Bag vs. Set semantics (why bag?)
• Semantic of SQL evaluation (?)

3

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Bar

Frequents

SQL set and bag operations

• UNION, EXCEPT, INTERSECT
• Set semantics

• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

• Exactly like set ∪, −, and ∩ in relational algebra

• UNION ALL, EXCEPT ALL, INTERSECT ALL
• Bag semantics
• Think of each row as having an implicit count (the

number of times it appears in the table)
• Bag union: sum up the counts from two tables
• Bag difference: proper-subtract the two counts
• Bag intersection: take the minimum of the two counts

4

Examples of bag operations
5

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

• (SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);
• Users who poked others but never got poked by others

• (SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);
• Users who poked others more than others poke them

6

FNext: how to “nest” SQL queries
and write sub-queries?

7

Table subqueries
• Use query result as a table
• In set and bag operations, FROM clauses, etc.
• A way to “nest” queries

• Example: names of users who poked others more
than others poked them

• SELECT DISTINCT name
FROM User,

((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AS T

WHERE User.uid = T.uid;

8

Poke (uid1, uid2, timestamp)

IN subqueries

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
• Example: users (all columns) at the same age as

(some) Bart

• SELECT *
FROM User
WHERE age IN (SELECT age

FROM User
WHERE name = 'Bart');

9

User(uid, name, age, pop)

Let’s first try without sub-queries

You can use NOT IN too

EXISTS subqueries

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty
• Example: users at the same age as (some) Bart
• SELECT *

FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

• How about the previous one with “IN”?

10

You can use NOT EXISTS too

User(uid, name, age, pop)

Semantics of subqueries

• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• For each row u in User
• Evaluate the subquery with the value of u.age
• If the result of the subquery is not empty, output u.*

• The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)

11

Remember SQL evaluation!
FROM-WHERE-SELECT

User(uid, name, age, pop)

“WITH” clause – very useful!
• You will find “WITH” clause very useful!

WITH Temp1 AS
(SELECT ….. ..),
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can simplify complex nested queries

12

Example: users at the same age as (some) Bart
WITH BartAge AS

(SELECT age
FROM User
WHERE name = ‘Bart’)

SELECT U.uid, U.name, U.age, U.pop
FROM User U, BartAge B
WHERE U.age = B.age

WITH clause
not really needed
for this query!

Scalar subqueries

• A query that returns a single row can be used as a
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart
• SELECT *

FROM User
WHERE age = (SELECT age

FROM User
WHERE name = 'Bart');

• Runtime error if subquery returns more than one row
• Under what condition will this error never occur?

• What if the subquery returns no rows?
• The answer is treated as a special value NULL, and the

comparison with NULL will fail (later)

13

What’s Bart’s age?

Scoping rule of subqueries

• To find out which table a column belongs to
• Start with the immediately surrounding query
• If not found, look in the one surrounding that; repeat if

necessary

• Use table_name.column_name notation and AS
(renaming) to avoid confusion

14

• SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS

(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));

• What does this query return?
• Users who join at least two groups

Another example
15

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Quantified subqueries

• A quantified subquery can be used syntactically as a
value in a WHERE condition
• Universal quantification (for all):

… WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
… WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that
𝑥 𝑜𝑝 𝑡

FBeware
• In common parlance, “any” and “all” seem to be synonyms
• In SQL, ANY really means “some”

16

Read this slide yourself
Example in class (next slide)

Examples of quantified subqueries

• Which users are the most popular?

• SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

• SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

FUse NOT to negate a condition

17

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

More ways to get the most popular

• Which users are the most popular?

• SELECT *
FROM User AS u
WHERE NOT EXISTS

(SELECT * FROM User
WHERE pop > u.pop);

• SELECT * FROM User
WHERE uid NOT IN

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

18

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Practice queries – check yourself

FNext: aggregates, group-by,
having!

19

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• SELECT COUNT(*), AVG(pop)

FROM User
WHERE age < 18;
• COUNT(*) counts the number of rows

20User(uid, name, age, pop)

Aggregates with DISTINCT

• Example: How many users are in some group?

• SELECT COUNT(DISTINCT uid)
FROM Member;

is equivalent to:

• SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

21Member(uid, gid)

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group
• SELECT age, AVG(pop)

FROM User
GROUP BY age;

22

User(uid, name, age, pop)

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;
• Compute FROM (×)
• Compute WHERE (𝜎)
• Compute GROUP BY: group rows according to the

values of GROUP BY columns
• Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

FNumber of groups =
number of rows in the final output

23

See example
On the next slide first

Example of computing GROUP BY
SELECT age, AVG(pop) FROM User GROUP BY age;

24

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

User(uid, name, age, pop)

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group
SELECT AVG(pop) FROM User;

25

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

User(uid, name, age, pop)

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT expression

produces only one value for each group

26

Examples on blackboard

Announcements (Thu. Feb. 6)

• If you are not in a project group yet, or in a standard
project group with < 5 members or > 5 members,
please send me an email by tomorrow (Friday) noon!

27

Examples of invalid queries

• SELECT uid, age
FROM User GROUP BY age;
• Recall there is one output row per group
• There can be multiple uid values per group

• SELECT uid, MAX(pop) FROM User;
• Recall there is only one group for an aggregate query

with no GROUP BY clause
• There can be multiple uid values
• Wishful thinking (that the output uid value is the one

associated with the highest popularity) does NOT work

28

WRONG!

WRONG!

Which one is correct?

User(uid, name, age, pop)

HAVING

• Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)
• SELECT … FROM … WHERE … GROUP BY …

HAVING 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏;
• Compute FROM (×)
• Compute WHERE (𝜎)
• Compute GROUP BY: group rows according to the values

of GROUP BY columns
• Compute HAVING (another 𝜎 over the groups)
• Compute SELECT (𝜋) for each group that passes HAVING

29

HAVING examples

• List the average popularity for each age group with
more than a hundred users
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING COUNT(*) > 100;
• Can be written using WHERE and table sub-queries

• Find average popularity for each age group over 10
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING age > 10;
• Can be written using WHERE without table subqueries

30User(uid, name, age, pop)

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly
• DBMS stores the view definition query instead of view

contents
• Can be used in queries just like a regular table

31

Creating and dropping views

• Example: members of Jessica’s Circle
• CREATE VIEW JessicaCircle AS

SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');
• Tables used in defining a view are called “base tables”

• User and Member above

• To drop a view
• DROP VIEW JessicaCircle;

32

Why use views?

FNext: incomplete information –
nulls, and outerjoins!

33

Incomplete information

• Example: User (uid, name, age, pop)
• Value unknown
• We do not know Nelson’s age

• Value not applicable
• Suppose pop is based on interactions with others on our

social networking site
• Nelson is new to our site; what is his pop?

34

Ideas to handle unknown or missing attribute values?

Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to

indicate a missing or invalid pop
• Leads to incorrect answers if not careful

• SELECT AVG(pop) FROM User;
• Complicates applications

• SELECT AVG(pop) FROM User
WHERE pop <> -1;

• Perhaps the value is not
as special as you think!
• Ever heard of the Y2K bug?

“00” was used as a
missing or invalid year value

35

http://www.90s411.com/images/y2k-cartoon.jpg

Solution 2

• A valid-bit for every column
• User (uid,

name, name_is_valid,
age, age_is_valid,
pop, pop_is_valid)

• Complicates schema and queries
• SELECT AVG(pop) FROM User

WHERE pop_is_valid;

36User(uid, name, age, pop)

Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)

UserAge (uid, age)
UserPop (uid, pop)
• UserID (uid)

• Conceptually the cleanest solution
• Still complicates schema and queries

• How to get all information about users in a table?
• Check yourself: Natural join doesn’t work but outerjoins (soon)

do -- Why?

37

SQL’s solution

• A special value NULL
• For every domain
• Special rules for dealing with NULL’s

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

38

Computing with NULL’s

• When we operate on a NULL and another value
(including another NULL) using +, −, etc., the result
is NULL

• Aggregate functions ignore NULL, except COUNT(*)
(since it counts rows)

39

Three-valued logic

• TRUE = 1, FALSE = 0, UNKNOWN = 0.5
• 𝑥 AND 𝑦 = min(𝑥, 𝑦)
• 𝑥 OR 𝑦 = max(𝑥, 𝑦)
• NOT 𝑥 = 1 − 𝑥
• When we compare a NULL with another value

(including another NULL) using =, >, etc., the result
is UNKNOWN
• WHERE and HAVING clauses only select rows for

output if the condition evaluates to TRUE
• UNKNOWN is not enough

40

Unfortunate consequences

• SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT(*) FROM User;
• Not equivalent
• Although AVG(pop)=SUM(pop)/COUNT(pop) still

• SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;
• Not equivalent

FBe careful: NULL breaks many equivalences

41

Are these equivalent?

User(uid, name, age, pop)

Another problem

• Example: Who has NULL pop values?
• SELECT * FROM User WHERE pop = NULL;

• Does not work; never returns anything

• SQL introduced special, built-in predicates
IS NULL and IS NOT NULL
• SELECT * FROM User WHERE pop IS NULL;

• Check yourself:
• (SELECT * FROM User)

EXCEPT ALL
(SELECT * FROM User WHERE pop = pop);
• Works, but ugly

42

Outerjoin motivation

• Example: a master group membership list
• SELECT g.gid, g.name AS gname,

u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;
• What if a group is empty?
• It may be reasonable for the master list to include empty

groups as well
• For these groups, uid and uname columns would be NULL

43User(uid, name, age, pop)
Member(uid, gid)

Outerjoin flavors and definitions

• A full outerjoin between R and S (denoted 𝑅⟗𝑆)
includes all rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join with any 𝑆

rows) padded with NULL’s for 𝑆’s columns
• “Dangling” 𝑆 rows (those that do not join with any 𝑅

rows) padded with NULL’s for 𝑅’s columns

• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆 plus
dangling 𝑅 rows padded with NULL’s
• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈ 𝑆

plus dangling 𝑆 rows padded with NULL’s

44

Outerjoin examples
45

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

Group⟕Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

foo NULL 789

Group⟗Member

Outerjoin syntax
• SELECT * FROM Group LEFT OUTER JOIN Member

ON Group.gid = Member.gid;
≈ 𝐺𝑟𝑜𝑢𝑝 ⟕

VWXYZ.\]^_`abcaW.\]^
𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
VWXYZ.\]^_`abcaW.\]^

𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
VWXYZ.\]^_`abcaW.\]^

𝑀𝑒𝑚𝑏𝑒𝑟

☞A similar construct exists for regular (“inner”) joins:
• SELECT * FROM Group JOIN Member

ON Group.gid = Member.gid;

☞These are theta joins rather than natural joins
• Return all columns in Group and Member

☞For natural joins, add keyword NATURAL; don’t use ON

46

Announcements (Tue. Feb. 11)
• HW3 : Q1-Q3 due tonight (Tuesday Feb 11 11:59 pm)
• HW3: Q4-Q5 due Saturday 02/15 **12 NOON**
• All project groups should be formed now

• Otherwise you must let me know after class today
• Keep working on Milestone 1 – due on 02/20 (Thursday)

• Midterm next Tuesday 02/18 in class
• Open book, open notes
• No electronic devices, no collaboration
• Everything covered until and including Thursday 02/13 included
• Sample midterm on sakai -> resources -> midterm

• HW2 grades posted on sakai
• Sample solutions will be posted soon

47

FNext: how to create a table and
insert/delete rows?

48

Creating and dropping tables

• CREATE TABLE table_name
(…, column_name column_type, …);
• DROP TABLE table_name;
• Examples

create table User(uid integer, name varchar(30),
age integer, pop float);

create table Group(gid char(10), name varchar(100));
create table Member(uid integer, gid char(10));
drop table Member;
drop table Group;
drop table User;
-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...Group... is
-- equivalent to ...GROUP...).

49

INSERT

• Insert one row
• INSERT INTO Member VALUES (789, 'dps');

• User 789 joins Dead Putting Society

• Insert the result of a query
• INSERT INTO Member

(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid

FROM Member
WHERE gid = 'dps'));

• Everybody joins Dead Putting Society!

50

DELETE

• Delete everything from a table
• DELETE FROM Member;

• Delete according to a WHERE condition
Example: User 789 leaves Dead Putting Society
• DELETE FROM Member

WHERE uid = 789 AND gid = 'dps';

Example: Users under age 18 must be removed
from United Nuclear Workers
• DELETE FROM Member

WHERE uid IN (SELECT uid FROM User
WHERE age < 18)

AND gid = 'nuk';

51

UPDATE

• Example: User 142 changes name to “Barney”
• UPDATE User

SET name = 'Barney'
WHERE uid = 142;

• Example: We are all popular!
• UPDATE User

SET pop = (SELECT AVG(pop) FROM User);
• But won’t update of every row causes average pop to change?
FSubquery is always computed over the old table

52

FNext: constraints and triggers!

53

Constraints

• Restrictions on allowable data in a database
• In addition to the simple structure and type restrictions

imposed by the table definitions
• Declared as part of the schema
• Enforced by the DBMS

• Why use constraints?
• Protect data integrity (catch errors)
• Tell the DBMS about the data (so it can optimize better)

54

Types of SQL constraints

• NOT NULL
• Key
• Referential integrity (foreign key)
• Tuple- and attribute-based CHECK’s
• (not covered for now -- General assertion)

55

NOT NULL constraint examples

• CREATE TABLE User
(uid INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL);

56

Key declaration examples
• CREATE TABLE User

(uid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL UNIQUE,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid));

57

This form is required for multi-attribute keys

At most one primary key
Any number of unique

Referential integrity example

• Member.uid references User.uid
• If an uid appears in Member, it must appear in User

• Member.gid references Group.gid
• If a gid appears in Member, it must appear in Group

FThat is, no “dangling pointers”

58

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Referencing column(s) form a FOREIGN KEY
• Example
• CREATE TABLE Member

(uid INTEGER NOT NULL
REFERENCES User(uid),

gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

59

This form is useful for multi-attribute foreign keys

Enforcing referential integrity

Example: Member.uid references User.uid
• Insert or update a Member row so it refers to a non-

existent uid?
• Reject

• Delete or update a User row whose uid is
referenced by some Member row?
• Reject
• Cascade: ripple changes to all referring rows
• Set NULL: set all references to NULL
• All three options can be specified in SQL

60

Tuple- and attribute-based CHECK’s
61

• Associated with a single table
• Only checked when a tuple/attribute is

inserted/updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• (unlike only TRUE in WHERE conditions!)

• Examples:
• CREATE TABLE User(...

age INTEGER CHECK(age IS NULL OR age > 0),
...);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),
...);

Is it a referential integrity constraint?
Not quite; not checked when User is modified

“Active” data

• Constraint enforcement: When an operation
violates a constraint, abort the operation or try to
“fix” data
• Example: enforcing referential integrity constraints
• Generalize to arbitrary constraints?

• Data monitoring: When something happens to the
data, automatically execute some action.
Examples?
• Example: When price rises above $20 per share, sell
• Example: When enrollment is at the limit and more

students try to register, email the instructor

62

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

• Example:
• Event: some user’s popularity is updated
• Condition: the user is a member of

“Jessica’s Circle,” and pop drops below 0.5
• Action: kick that user out of Jessica’s Circle

63

http://pt.simpsons.wikia.com/wiki/Arquivo:Jessica_lovejoy.jpg

Jessica is picky about her group members!

Trigger example (Row Level)
CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = 'jes'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = 'jes';

64

Event

Condition

Action

Trigger options

• Possible events include:
• INSERT ON table
• DELETE ON table
• UPDATE [OF column] ON table

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)

65

CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = 'jes'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = 'jes';

Event

Condition

Action

Transition variables
• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a hypothetical read-only table containing all

rows to be modified before the triggering event
• NEW TABLE: a hypothetical table containing all modified

rows after the triggering event

FNot all of them make sense all the time, e.g.
• AFTER INSERT statement-level triggers

• Can use only NEW TABLE
• AFTER UPDATE row-level triggers

• Can use only OLD ROW and NEW ROW
• BEFORE DELETE row-level triggers

• Can use only OLD ROW
• etc.

66

Statement-level trigger example

CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
DELETE FROM Member
WHERE gid = 'jes'
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

67

Event

Action

Check the example yourself

Condition

Event

Action

BEFORE trigger example
• Never allow age to decrease
CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW
WHEN (n.age < o.age)
SET n.age = o.age;
FBEFORE triggers are often used to

“condition” data
FAnother option is to raise an error in the trigger

body to abort the transaction that caused the
trigger to fire

68Check the example yourself

Statement- vs. row-level triggers

Why are both needed?
• Certain triggers are only possible at statement level
• If the number of users inserted by this statement

exceeds 100 and their average age is below 13, then …

• Simple row-level triggers are easier to implement
• Statement-level triggers require significant amount of

state to be maintained in OLD TABLE and NEW TABLE
• However, a row-level trigger gets fired for each row, so

complex row-level triggers may be less efficient for
statements that modify many rows

69

SQL features covered so far

• Query
• Modification
• Views
• Constraints
• Triggers

• Still a lot more features of SQL not covered
• Learn some of them yourself as you play with SQL

queries!

70

Practice problem for midterm
• The following SQL queries are equivalent for any tables R

and S (possibly containing duplicates):
• Q1:
((SELECT * FROM R)

UNION
(SELECT * FROM S))

EXCEPT
(SELECT * FROM S);

• Q2:
SELECT * FROM R;

• True or False? Why?

71

Practice problem for midterm -
solution
• The following SQL queries are equivalent for any tables R and S

(possibly containing duplicates):

• Q1:

((SELECT * FROM R)

UNION

(SELECT * FROM S))

EXCEPT

(SELECT * FROM S);

• Q2:

SELECT * FROM R;

• False: Suppose R has (a), S has (a), the first query returns empty answer.

• What happens if we replace UNION and/or EXCEPT by UNION ALL and
EXCEPT ALL?

72

