Relational Database Design Theory

Introduction to Databases CompSci 316 Spring 2020

1

3

Announcements (Thu. Feb. 13)

- HW3: Q4-Q5 due Saturday 02/15 **12 NOON**
- Midterm next Tuesday 02/18 in class
 - · Open book, open notes
 - · No electronic devices, no collaboration
 - Everything covered until and including TODAY Thursday 02/13 included!
 - · Sample midterm on sakai -> resources -> midterm
 - HW1, HW2 sample solutions on sakai
- We will move some office hours to next Monday for the midterm
 - Follow piazza announcements

2

Today's plan

- Start database design theory
 - Functional dependency, BCNF
- Review some concepts in between and at the end
 - Weak entity set, ISA, multiplicity, etc. in ER diagram
 - Outer joins, different join types
 - Triggers
 - EXISTS
 - Foreign keys

Motivation

- Why is UserGroup (uid, uname, gid) a bad design?
- Wouldn't it be nice to have a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

4

Functional dependencies

- A functional dependency (FD) has the form X → Y, where X and Y are sets of attributes in a relation R
- *X* → *Y* means that whenever two tuples in *R* agree on all the attributes in *X*, they must also agree on all attributes in *Y*

FD examples

Address (street address, city, state, zip)

5

Redefining "keys" using FD's

A set of attributes *K* is a key for a relation *R* if

- $K \rightarrow \text{all (other)}$ attributes of R
 - That is, *K* is a "super key"
- No proper subset of *K* satisfies the above condition
 - That is, *K* is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from \mathcal{F} ?
 - Are some of the FD's in F redundant (i.e., they follow from the others)?
- Is *K* a key of *R*?
 - What are all the keys of *R*?

7

8

Attribute closure

 Given R, a set of FD's F that hold in R, and a set of attributes Z in R:

The closure of Z (denoted Z^+) with respect to $\mathcal F$ is the set of all attributes $\{A_1,A_2,...\}$ functionally determined by Z (that is, $Z\to A_1A_2$...)

- Algorithm for computing the closure
- Example
 On board
 Using next slide

 \mathcal{F} includes:

uid → uname, twitterid twitterid → uid

uid, gid \rightarrow fromDate

- Start with closure = Z
- If $X \to Y$ is in $\mathcal F$ and X is already in the closure, then also add Y to the closure
- Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

- uid \rightarrow uname, twitterid
- twitterid \rightarrow uid
- uid, gid \rightarrow fromDate

Not a good design, and we will see why shortly

9

10

Example of computing closure

- {gid, twitterid}+ = ?
- twitterid → uid
 - Add uid
 - Closure grows to { gid, twitterid, uid }
- uid \rightarrow uname, twitterid
 - Add uname, twitterid
 - Closure grows to { gid, twitterid, uid, uname }
- uid, gid → fromDate
 - Add fromDate
 - Closure is now all attributes in UserJoinsGroup

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \to Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to $\mathcal F$
 - If $Y \subseteq X^+$, then $X \to Y$ follows from $\mathcal F$
- Is *K* a key of *R*?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

11

Rules of FD's

All intuitive but check yourself!

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- "Using these rules, you can prove or disprove an FD given a set of FDs

(Problems with) Non-key FD's

- Consider a non-trivial FD $X \to Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

That *b* is associated with *a* is recorded multiple times: redundancy, update/insertion/deletion anomaly

13

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• uid \rightarrow uname, twitterid

(... plus other FD's)

uid	uname	twitterid	gid	fromDate
142	Bart	@BartJSimpson	dps	1987-04-19
123	Milhouse	@MilhouseVan_	gov	1989-12-17
857	Lisa	@lisasimpson	abc	1987-04-19
857	Lisa	@lisasimpson	gov	1988-09-01
456	Ralph	@ralphwiggum	abc	1991-04-25
456	Ralph	@ralphwiggum	gov	1992-09-01

14

• Eliminates redundancy

• To get back to the original relation: ⋈

15

16

Bad decomposition 142 dps 123 gov 857 abc 1989-12-17 1987-04-19 456 abc 1991-04-25 142 dps 142 1987-04-19 857 abc 857 1987-04-19 456 1991-04-25 456 456 1992-09-01 • Association between gid and from Date is lost

• Join returns more rows than the original relation

17

Lossless join decomposition

Example on board Check definition yourself

- Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attrs(S)}(R)$
 - $T = \pi_{attrs(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R=S\bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

19

20

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key → other attributes"
- When to decompose
 - · As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

21 22

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD X → Y in R where X is not a super key of R
- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R₂ has attributes X ∪ Z, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

uid → uname, twitterid twitterid → uid uid, gid → fromDate

User JoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid)

uid → uname, twitterid

uid → uname, twitterid

twitterid → uid

BCNF

23 24

Why is BCNF decomposition lossless

Given non-trivial $X \to Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:
 - $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$ Sure; and it doesn't depend on the FD
- Check and prove yourself!
- Anything that comes back in the join must be in the original relation:
 - $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Proof will make use of the fact that $X \to Y$

25 26

Recap

27

 Functional dependencies: a generalization of the key concept

- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's

Summary

Philosophy behind BCNF:
 Data should depend on the key, the whole key, and nothing but the key!

• Other normal forms

- 4NF and Multi-valued-dependencies: later in the course
- Not covered

28

- 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
- 2NF: Slightly more relaxed than 3NF
- 1NF: All column values must be atomic

