Relational Database Design Theory

Introduction to Databases
CompSci 316 Spring 2020

DUKE
COMPUTER SCIENCE

1

Today's plan

- Start database design theory
- Functional dependency, BCNF
- Review some concepts in between and at the end
- Weak entity set, ISA, multiplicity, etc. in ER diagram
- Outer joins, different join types
- Triggers
- EXISTS
- Foreign keys

3

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

5

Announcements (Thu. Feb. 13)

- HW3: Q4-Q5 due Saturday 02/15 ** 12 NOON**
- Midterm next Tuesday 02/18 in class
- Open book, open notes
- No electronic devices, no collaboration
- Everything covered until and including TODAY Thursday 02/13 included!
- Sample midterm on sakai -> resources -> midterm
- HW1, HW2 sample solutions on sakai
- We will move some office hours to next Monday for the midterm
- Follow piazza announcements

2

Motivation

uid	uname	gid
142	Bart	dps
123	Milhouse	gov
857	Lisa	abc
857	Lisa	gov
456	Ralph	abc
456	Ralph	gov
...

- Why is UserGroup (uid, uname, gid) a bad design?
- Wouldn't it be nice to have a systematic approach to detecting and removing redundancy in designs?
- Dependencies, decompositions, and normal forms

4

FD examples

Address (street_address, city, state, zip)

Redefining "keys" using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
- That is, K is a "super key"
- No proper subset of K satisfies the above condition
- That is, K is minimal

Attribute closure

- Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R :
The closure of Z (denoted Z^{+}) with respect to \mathcal{F} is the set of all attributes $\left\{A_{1}, A_{2}, \ldots\right\}$ functionally determined by Z (that is, $Z \rightarrow A_{1} A_{2} \ldots$)
- Algorithm for computing the closure Example
- Start with closure $=Z$ Using next slide
- If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
- Repeat until no new attributes can be added

9

Example of computing closure

- $\{\text { gid, twitterid }\}^{+}=$?
\mathcal{F} includes:
uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate
- Add uid
- Closure grows to \{ gid, twitterid, uid \}
- uid \rightarrow uname, twitterid
- Add uname, twitterid
- Closure grows to \{ gid, twitterid, uid, uname \}
- uid, gid \rightarrow fromDate
- Add fromDate
- Closure is now all attributes in UserJoinsGroup

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from \mathcal{F} ?
- Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R ?
- What are all the keys of R ?

8

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
Assume that there is a $1-1$ correspondence between our users and Twitter accounts

- uid \rightarrow uname, twitterid
- twitterid \rightarrow uid
- uid, gid \rightarrow fromDate

Not a good design, and we will see why shortly

10

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F} ?
- Compute X^{+}with respect to \mathcal{F}
- If $Y \subseteq X^{+}$, then $X \rightarrow Y$ follows from \mathcal{F}
- Is K a key of R ?
- Compute K^{+}with respect to \mathcal{F}
- If K^{+}contains all the attributes of R, K is a super key
- Still need to verify that K is minimal (how?)

Rules of FD's

- Armstrong's axioms
- Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
- Augmentation: If $X \rightarrow Y$, then $X Z \rightarrow Y Z$ for any Z
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
- Splitting: If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$

Using these rules, you can prove or disprove an FD given a set of FDs

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

- uid \rightarrow uname, twitterid
(... plus other FD's)

uid	uname	twitterid	gid	fromoate
142	Bart	@BartSimpson	dps	1987-04-19
123	Milhouse	@MilhouseVan_	gov	1989-12-17
857	Lisa	@lisasimpson	abc	1987-04-19
857	Lisa	@lisasimpson	gov	1988-09-01
456	Ralph	@ralphwiggum	abc	1991-04-25
456	Ralph	@ralphwiggum	gov	1992-09-01
...

15

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)

(Problems with) Non-key FD's

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
- Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

X	Y	Z
a	b	c_{1}
a	b	c_{2}
\ldots	\ldots	\ldots

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly

Decomposition

- To get back to the original relation: \bowtie

16

Bad decomposition

- Association between gid and fromDate is lost
- Join returns more rows than the original relation

Lossless join decomposition

Example on board

- Decompose relation R into relations S and T
- $\operatorname{attrs}(R)=\operatorname{attrs}(S) \cup \operatorname{attrs}(T)$
- $S=\pi_{\operatorname{attrs}(S)}(R)$
- $T=\pi_{\operatorname{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R=S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
- A lossy decomposition is one with $R \subset S \bowtie T$

Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
- Or, the ability to distinguish different original relations

20

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
- For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
- That is, all FDs follow from "key \rightarrow other attributes"
- When to decompose
- As long as some relation is not in BCNF
- How to come up with a correct decomposition
- Always decompose on a BCNF violation (details next)
\square Then it is guaranteed to be a lossless join decomposition!

22

BCNF decomposition example

24

25

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
- BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's

27

Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:

$$
R \subseteq \pi_{X Y}(R) \bowtie \pi_{X Z}(R)
$$

- Sure; and it doesn't depend on the FD
- Check and prove yourself!
- Anything that comes back in the join must be in the original relation:

$$
R \supseteq \pi_{X Y}(R) \bowtie \pi_{X Z}(R)
$$

- Proof will make use of the fact that $X \rightarrow Y$

26

Summary

- Philosophy behind BCNF:

Data should depend on the key, the whole key, and nothing but the key!

- You could have multiple keys though
- Other normal forms
- 4NF and Multi-valued-dependencies : later in the course
- Not covered
- 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
- 2NF: Slightly more relaxed than 3NF
- ${ }_{1} \mathrm{NF}$: All column values must be atomic

