
Relational Database
Design Theory

Introduction to Databases
CompSci 316 Spring 2020

Announcements (Thu. Feb. 13)
• HW3: Q4-Q5 due Saturday 02/15 **12 NOON**

• Midterm next Tuesday 02/18 in class
• Open book, open notes
• No electronic devices, no collaboration
• Everything covered until and including TODAY Thursday 02/13

included!
• Sample midterm on sakai -> resources -> midterm
• HW1, HW2 sample solutions on sakai

• We will move some office hours to next Monday for the
midterm
• Follow piazza announcements

2

Today’s plan

• Start database design theory
• Functional dependency, BCNF

• Review some concepts in between and at the end
• Weak entity set, ISA, multiplicity, etc. in ER diagram
• Outer joins, different join types
• Triggers
• EXISTS
• Foreign keys

3

Motivation

• Why is UserGroup (uid, uname, gid) a bad design?
• It has redundancy—user name is recorded multiple

times, once for each group that a user belongs to
• Leads to update, insertion, deletion anomalies

• Wouldn’t it be nice to have a systematic approach
to detecting and removing redundancy in designs?
• Dependencies, decompositions, and normal forms

4

uid uname gid

142 Bart dps

123 Milhouse gov

857 Lisa abc

857 Lisa gov

456 Ralph abc

456 Ralph gov

… … …

Functional dependencies

• A functional dependency (FD) has the form 𝑋 → 𝑌,
where 𝑋 and 𝑌 are sets of attributes in a relation 𝑅
• 𝑋 → 𝑌 means that whenever two tuples in 𝑅 agree

on all the attributes in 𝑋, they must also agree on
all attributes in 𝑌

5

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 ? ?

… … …

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything

FD examples

Address (street_address, city, state, zip)
• street_address, city, state→ zip
• zip → city, state
• zip, state→ zip?
• This is a trivial FD
• Trivial FD: LHS ⊇ RHS

• zip→ state, zip?
• This is non-trivial, but not completely non-trivial
• Completely non-trivial FD: LHS ∩ RHS = ∅

6

Redefining “keys” using FD’s

A set of attributes 𝐾 is a key for a relation 𝑅 if
• 𝐾 → all (other) attributes of 𝑅
• That is, 𝐾 is a “super key”

• No proper subset of 𝐾 satisfies the above condition
• That is, 𝐾 is minimal

7

Reasoning with FD’s

Given a relation 𝑅 and a set of FD’s ℱ
• Does another FD follow from ℱ?
• Are some of the FD’s in ℱ redundant (i.e., they follow

from the others)?

• Is 𝐾 a key of 𝑅?
• What are all the keys of 𝑅?

8

Attribute closure

• Given 𝑅, a set of FD’s ℱ that hold in 𝑅, and a set of
attributes 𝑍 in 𝑅:
The closure of 𝑍 (denoted 𝑍3) with respect to ℱ is
the set of all attributes 𝐴5, 𝐴7, … functionally
determined by 𝑍 (that is, 𝑍 → 𝐴5𝐴7 …)
• Algorithm for computing the closure
• Start with closure = 𝑍
• If 𝑋 → 𝑌 is in ℱ and 𝑋 is already in the closure, then also

add 𝑌 to the closure
• Repeat until no new attributes can be added

9

Example
On board
Using next slide

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
Assume that there is a 1-1 correspondence between
our users and Twitter accounts
• uid → uname, twitterid
• twitterid → uid
• uid, gid → fromDate

Not a good design, and we will see why shortly

10

Example of computing closure

• gid, twitterid 3 = ?
• twitterid → uid
• Add uid
• Closure grows to { gid, twitterid, uid }

• uid → uname, twitterid
• Add uname, twitterid
• Closure grows to { gid, twitterid, uid, uname }

• uid, gid→ fromDate
• Add fromDate
• Closure is now all attributes in UserJoinsGroup

11

ℱ includes:
uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

Using attribute closure

Given a relation 𝑅 and set of FD’s ℱ
• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute 𝑋3 with respect to ℱ
• If 𝑌 ⊆ 𝑋3, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾3 with respect to ℱ
• If 𝐾3 contains all the attributes of 𝑅, 𝐾 is a super key
• Still need to verify that 𝐾 is minimal (how?)

12

Rules of FD’s

• Armstrong’s axioms
• Reflexivity: If 𝑌 ⊆ 𝑋, then 𝑋 → 𝑌
• Augmentation: If 𝑋 → 𝑌, then 𝑋𝑍 → 𝑌𝑍 for any 𝑍
• Transitivity: If 𝑋 → 𝑌 and 𝑌 → 𝑍, then 𝑋 → 𝑍

• Rules derived from axioms
• Splitting: If 𝑋 → 𝑌𝑍, then 𝑋 → 𝑌 and 𝑋 → 𝑍
• Combining: If 𝑋 → 𝑌 and 𝑋 → 𝑍, then 𝑋 → 𝑌𝑍

FUsing these rules, you can prove or disprove an FD
given a set of FDs

13

We already used these intuitive
rules but check yourself again!

End of lecture
Thursday 02/13

Announcements (Thu. Feb. 20)

• Project Milestone 1:
• Due on Monday February 24 night
• One report per group to be submitted to gradescope.

• More in-class labs and quizzes from next week!

• Survey to be sent soon.

• In-class quiz on Tuesday 02/25 on BCNF (to be covered today)

14

(Problems with) Non-key FD’s

• Consider a non-trivial FD 𝑋 → 𝑌 where 𝑋 is not a
super key
• Since 𝑋 is not a super key, there are some attributes (say
𝑍) that are not functionally determined by 𝑋

15

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐5
𝑎 𝑏 𝑐7

… … …

That 𝑏 is associated with 𝑎 is recorded multiple times:
redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
• uid → uname, twitterid
(… plus other FD’s)

16

uid uname twitterid gid fromDate

142 Bart @BartJSimpson dps 1987-04-19

123 Milhouse @MilhouseVan_ gov 1989-12-17

857 Lisa @lisasimpson abc 1987-04-19

857 Lisa @lisasimpson gov 1988-09-01

456 Ralph @ralphwiggum abc 1991-04-25

456 Ralph @ralphwiggum gov 1992-09-01

… … … … …

What are the problems? How do we fix them?

Decomposition

• Eliminates redundancy
• To get back to the original relation:

17

⋈

uid uname twitterid gid fromDate

142 Bart @BartJSimpson dps 1987-04-19

123 Milhouse @MilhouseVan_ gov 1989-12-17

857 Lisa @lisasimpson abc 1987-04-19

857 Lisa @lisasimpson gov 1988-09-01

456 Ralph @ralphwiggum abc 1991-04-25

456 Ralph @ralphwiggum gov 1992-09-01

… … … … …

uid uname twitterid

142 Bart @BartJSimpson

123 Milhouse @MilhouseVan_

857 Lisa @lisasimpson

456 Ralph @ralphwiggum

… … …

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …

uid twitterid

142 @BartJSimpson

123 @MilhouseVan_

857 @lisasimpson

456 @ralphwiggum

… …

uid uname

142 Bart

123 Milhouse

857 Lisa

456 Ralph

… …

Unnecessary decomposition

• Fine: join returns the original relation
• Unnecessary: no redundancy is removed; schema is

more complicated (and uid is stored twice!)

18

uid uname twitterid

142 Bart @BartJSimpson

123 Milhouse @MilhouseVan_

857 Lisa @lisasimpson

456 Ralph @ralphwiggum

… … …

uid fromDate

142 1987-04-19

123 1989-12-17

857 1987-04-19

857 1988-09-01

456 1991-04-25

456 1992-09-01

… …

Bad decomposition

• Association between gid and fromDate is lost
• Join returns more rows than the original relation

19

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …
uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Lossless join decomposition

• Decompose relation 𝑅 into relations 𝑆 and 𝑇
• 𝑎𝑡𝑡𝑟𝑠 𝑅 = 𝑎𝑡𝑡𝑟𝑠 𝑆 ∪ 𝑎𝑡𝑡𝑟𝑠 𝑇
• 𝑆 = 𝜋BCCDE F 𝑅
• 𝑇 = 𝜋BCCDE G 𝑅

• The decomposition is a lossless join decomposition
if, given known constraints such as FD’s, we can
guarantee that 𝑅 = 𝑆 ⋈ 𝑇

• Any decomposition gives 𝑅 ⊆ 𝑆 ⋈ 𝑇 (why?)
• A lossy decomposition is one with 𝑅 ⊂ 𝑆 ⋈ 𝑇

20

Example on board
Check definition yourself

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1988-09-01

857 gov 1987-04-19

456 abc 1991-04-25

456 gov 1992-09-01

… … …

Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the
loss of information
• Or, the ability to distinguish different original relations

21

No way to tell
which is the original relation

uid fromDate

142 1987-04-19

123 1989-12-17

857 1987-04-19

857 1988-09-01

456 1991-04-25

456 1992-09-01

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e.,
lossless join decomposition)

22

An answer: BCNF

• A relation 𝑅 is in Boyce-Codd Normal Form if
• For every non-trivial FD 𝑋 → 𝑌 in 𝑅, 𝑋 is a super key
• That is, all FDs follow from “key→ other attributes”

• When to decompose
• As long as some relation is not in BCNF

• How to come up with a correct decomposition
• Always decompose on a BCNF violation (details next)
FThen it is guaranteed to be a lossless join

decomposition!

23

BCNF decomposition algorithm

• Find a BCNF violation
• That is, a non-trivial FD 𝑋 → 𝑌 in 𝑅 where 𝑋 is not a super

key of 𝑅
• Decompose 𝑅 into 𝑅5 and 𝑅7, where
• 𝑅5 has attributes 𝑋 ∪ 𝑌
• 𝑅7 has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes

of 𝑅 that are in neither 𝑋 nor 𝑌
• Repeat until all relations are in BCNF

24

BCNF decomposition example
25

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid→ uname, twitterid
twitterid→ uid

uid, gid→ fromDate

Another example
26

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: twitterid → uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid→ uname
twitterid, gid→ fromDate

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid → uname

UserName (twitterid, uname)
BCNF

Why is BCNF decomposition lossless

Given non-trivial 𝑋 → 𝑌 in 𝑅 where 𝑋 is not a super
key of 𝑅, need to prove:
• Anything we project always comes back in the join:

𝑅 ⊆ 𝜋IJ 𝑅 ⋈ 𝜋IK 𝑅
• Sure; and it doesn’t depend on the FD

• Check and prove yourself!
• Anything that comes back in the join must be in the

original relation:
𝑅 ⊇ 𝜋IJ 𝑅 ⋈ 𝜋IK 𝑅

• Proof will make use of the fact that 𝑋 → 𝑌

27

Recap

• Functional dependencies: a generalization of the
key concept
• Non-key functional dependencies: a source of

redundancy
• BCNF decomposition: a method for removing

redundancies
• BNCF decomposition is a lossless join decomposition

• BCNF: schema in this normal form has no
redundancy due to FD’s

28

Summary

• Philosophy behind BCNF:
Data should depend on the key,
the whole key,
and nothing but the key!
• You could have multiple keys though

• Other normal forms
• 4NF and Multi-valued-dependencies : later in the course
• Not covered

• 3NF: More relaxed than BCNF; will not remove redundancy if
doing so makes FDs harder to enforce

• 2NF: Slightly more relaxed than 3NF
• 1NF: All column values must be atomic

29

