2/25/20

Announcements (Tue. Feb. 25)

* HW4: A group homework on creating a basic flask-based
website will be published today — due next Tuesday 02/03

.
P hys I Ca l Data * Each project group will work on this homework together

« Everyonein ateam will get the same grade

O rga n iZ atio n * You should divide the task or work on the same task as works for

you

Introduction to Databases It should provide the basic infrastructure for your website or app

CompSci 316 Spring 2020

? DUKE
COMPUTER SCIENCE

1 2

* Midterm scores and statistics published

* You can submit regrade requests on gradescope by next Tuesday
02/03.

Why do we draw databases like thisé Outline

* Storing data on a disk
* Record layout

* Block layout
* Column stores

3 4
Storage hierarchy How far away is data?
Location Cycles Location Time
Registers 1 My head 1min.
On-chip cache 2 This room 2 min.
On-board cache 10 Duke campus 10 min.
Why a hierarchy? Memory 100 Washingtonpc. 1.5 hr.

Disk 10° Pluto 2yr.

S E—
“ Tape 109 Andromeda 2000 yr.

(Source: AlphaSort paper, 1995)
The gap has been widening!

1/0 dominates—design your algorithms to reduce I/O!




Take a look yourself!

Latency Numbers
Every Programmer Should Know

Latency Comparison Numbers

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x 12 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter
Read 1 MB sequentially from SSD*

Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

500,000 ns
1,000,000 ns 1,000 us 1 ms -1GB/sec SSD, 4X memory
10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD

150,000,000 ns 150,000 us 150 ms

500 us

1 ns = 10*-9 seconds
1 us = 10°-6 seconds = 1,000 ns
1ms = 10°-3 seconds = 1,000 us = 1,000,000 ns

Credit
By Jeff Dean: http://research.google.com/people/jeff/
Originally by Peter Norvig: http://norvig.com/21-days.html#answers

2/25/20

A typical hard drive

/£/£8/Laptop-hard.dri d.ipe

7

A typical hard drive

“ 1 2}
Arm movement Moving parts” are slow

Spindle rotation
A A J

Top view

“Zoning”: more sectors/data on outer tracks

Sectors

Ablockis a
logical unit
of transfer
consisting of
one or more sectors

Disk access time

Sum of:

 Seek time: time for disk heads to move to the
correct cylinder

* Rotational delay: time for the desired block to
rotate under the disk head

* Transfer time: time to read/write data in the block
(= time for disk to rotate over the block)

Any guess of their relative values of
random and sequential access?

10

11

Random disk access

Seek time + rotational delay + transfer time

* Average seek time
* “Typical” value: 5 ms

* Average rotational delay
* Time for a half rotation (a function of RPM)
* “Typical” value: 4.2 ms (7200 RPM)

12



2/25/20

Sequential disk access

Seek time + rotational delay + transfer time

* Seek time
* 0 (assuming data is on the same track)

* Rotational delay
* 0 (assuming data is in the next block on the track)

* Easily an order of magnitude faster than random
disk access!

What about SSD (solid-state drives)?

* 12 orders of magnitude faster random
access than hard drives (under 0.1ms vs.
several ms)

But still much slower than memory (~0.1us)
« Little difference between random vs.
sequential read performance
* Random writes still hurt
In-place update would require erasing the
whole “erasure block” and rewriting it!

12012/12/55D-6-25-121.jpg,

13

14

Important consequences

* It’s all about reducing 1/0’s!

* Cache blocks from stable storage in memory
* DBMS maintains a memory buffer pool of blocks
* Reads/writes operate on these memory blocks
* Dirty (updated) memory blocks are “flushed” back to
stable storage

* Sequential /O is much faster than random 1/0

Picture on board that we will use again and again!

Performance tricks

* Disk layout strategy
* Keep related things (what are they?) close together:
same sector/block — same track = same cylinder —
adjacent cylinder
* Prefetching
* While processing the current block in memory, fetch the
next block from disk (overlap I/O with processing)
* Parallel I/O
* More disk heads working at the same time
* Disk scheduling algorithm
* Example: “elevator” algorithm
* Track buffer
* Read/write one entire track at a time

15

16

Record layout

Record = row in a table

* Variable-format records
* Rare in DBMS—table schema dictates the format
* Relevant for semi-structured data such as XML

* Focus on fixed-format records

* With fixed-length fields only, or
* With possible variable-length fields

Fixed-length fields

* All field lengths and offsets are constant
* Computed from schema, stored in the system catalog
» Example: CREATE TABLE User(uid INT, name CHAR(20), age
INT, pop FLOAT);
0o 4 24 28 36
I I (padded with space) I I I

* Watch out for alignment

* May need to pad; reorder columns if that helps
* What about NULL?

* Add a bitmap at the beginning of the record

17

18



2/25/20

Variable-length records

* Example: CREATE TABLE User(uid INT,
name VARCHAR(20), age INT, pop FLOAT,
comment VARCHAR(100));

* Approach 1: use field delimiters (\0’ okay?)
0 4 8 16
I 142 I 10 I 0.9 IBart\O IWe\rd kid!\O I

* Approach 2: use an offset array
0 4 8 16 18 32

22
I 142 I 10 I 0.9 LLI Bart IWe\rd kid! I
22 32

* Put all variable-length fields at the end (why?)
* Update is messy if it changes the length of a field

LOB fields

» Example: CREATE TABLE User(uid INT,
name CHAR(20), age INT,
pop FLOAT, picture BLOB(32000));
* Student records get “de-clustered”
* Bad because most queries do not involve picture
* Decomposition (automatically and internally done
by DBMS without affecting the user)
* (uid, name, age, pop)
* (uid, picture)

19

Block layout

How do you organize records in a block?
* NSM (N-ary Storage Model)
* Most commercial DBMS

* PAX (Partition Attributes Across)
* Ailamaki et al., VLDB 2001

20

NSM

* Store records from the beginning of each block

* Use a directory at the end of each block
* To locate records and manage free space
* Necessary for variable-length records

21

Options

* Reorganize after every update/delete to avoid
fragmentation (gaps between records)
* Need to rewrite half of the block on average

* A special case: What if records are fixed-length?
* Option 1: reorganize after delete

* Only need to move one record
* Need a pointer to the beginning of free space

* Option 2: do not reorganize after update
* Need a bitmap indicating which slots are in use

23

IR
HENE
22
Cache behavior of NSM

* Query: SELECT uid FROM User WHERE pop > 0.8;
* Assumptions: no index, and cache line size < record size

* Lots of cache misses
* uid and pop are not close enough by memory standards

142 Bart 10

0.9 123 Milhouse

n
.56 Ralph ﬁ- 100.2857 Lisa

807

456 Ralph 8

03

T Cache

24



2/25/20

PAX

* Most queries only access a few columns
* Cluster values of the same columns in each block
the same column of the next row is brought in together

C T T 4] (number of records)

Reorganize after every update

IECH N N R

* When a particular column of a row is brought into the cache,

E-length records only)
o keep fields together

(IS NOT NULL bitmap)

* The other extreme: store tables by columns
instead of rows
* Advantages (and disadvantages) of PAX are
magnified
* Not only better cache performance, but also fewer 1/0’s
for queries involving many rows but few columns
* Aggressive compression to further reduce I/0’s
* More disruptive changes to the DBMS architecture
are required than PAX
* Not only storage, but also query execution and

optimization e
* Example: Apache Parquet /(///

Beyond block layout: column stores

25

Summary

* Storage hierarchy

* Why 1/0’s dominate the cost of database operations
* Disk

* Steps in completing a disk access

* Sequential versus random accesses

* Record layout
* Handling variable-length fields
* Handling NULL
* Handling modifications

* Block layout
* NSM: the traditional layout
* PAX: a layout that tries to improve cache performance

* Column stores: NSM transposed, beyond blocks

27

26



