
Query Processing
Introduction to Databases
CompSci 316 Spring 2020



Announcements (Thu., Mar 05)

• Next week: Spring break, no class!
• No project update needed
• No office hours (email the instructor if you would like to talk)

• Lab-2 today at the end for about 20 mins
• Can submit by tomorrow (Fri) night, but submit early!
• 10% extra credit for submitting all questions correctly before class ends.
• Can discuss but everyone submits their own answers

• Check out my email on sakai about project coordination and 
updates

2



• SELECT * FROM USER WHERE age = 50
• Assume 12 users with age = 50
• Assume one data page can hold 4 User tuples

• What happens if the index is unclustered?
• Cost to access data pages can be  12

• What happens if the index is clustered?
• Cost to access data pages can be  3 or 4.

• Why?

3

Clustered vs. Unclustered Index
Data is sorted on search key Data can be anywhere



Hash vs. Tree Index
• Hash indexes can only handle equality queries

• SELECT * FROM R WHERE age = 5 (requires hash index on (age))
• SELECT * FROM R, S WHERE R.A = S.A (requires hash index on R.A or S.A)
• SELECT * FROM R WHERE age = 5 and name = ‘Bart’ (requires hash index on 

(age, name))

• - Cannot handle range queries or prefixes
• SELECT * FROM R WHERE age >= 5
• need to use tree indexes (more common)
• Tree index on (age), or (age, name) works, but not (name, age) – why?

• + But are more amenable to parallel processing
• later hash-based join

• Performance depends on how good the hash function is (whether the 
hash function distributes data uniformly and whether data has skew)

• Details of hash-based dynamic index (extendible hashing, linear 
hashing) not covered in this class

4



Trade-offs for Indexes
• Should we use as many indexes as possible?

5



Trade-offs for Indexes
• Should we use as many indexes as possible?

• Indexes can make 
• queries go faster
• updates slower

• Require disk space, too

6



Query Processing  Overview

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?
• All have different performance characteristics and/or 

make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives
• Let the query optimizer choose at run-time

7



Notation

• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s
• Memory requirement

8

Recall our disk-memory diagram 
On board!



• How do we implement selection and 
projection?

• Ideas? (discuss with neighbors)

• Cost?
• (page I/O -- in terms of B(R), |R| etc.)

• Memory requirement?

9



Scanning-based algorithms
10



Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2
• Not counting the cost of writing the result out
• Same for any algorithm!
• Maybe not needed—results may be pipelined into 

another operator

11



• How do we implement Join?

• Ideas? (discuss with neighbors)

• Cost?
• (page I/O -- in terms of B(R), |R| etc.)

• Memory requirement?

12



Nested-loop join

𝑅 ⋈) 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: 3

Improvement: block-based nested-loop join

13



Block-based Nested Loop Join

• 𝑅 ⋈) 𝑆
• R outer, S inner
• For each block of 𝑅, for each block of 𝑆:

For each 𝑟 in the 𝑅 block, for each 𝑠 in the 𝑆
block: …
• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: same as before

14


