
XML
Introduction to Databases
CompSci 316 Spring 2020

Updates

• HW5 problems on gradescope and gradiance
• (One) more coming on XML
• There may be an extra credit problem

• Let us know if you have problems in collaboration
for project/HW or accessing material

• Video-watch assignments to be submitted by ALL (2
days after lecture + 2 bonus days)

2

Lecture 11a:

XML Basics

3

Structured vs. unstructured data

• Relational databases are highly structured
• All data resides in tables
• You must define schema before entering any data
• Every row confirms to the table schema
• Changing the schema is hard and may break many things

• Texts are highly unstructured
• Data is free-form
• There is no pre-defined schema, and it’s hard to

define any schema
• Readers need to infer structures and meanings

What’s in between these two extremes?

4

5

…

Semi-structured data

• Observation: most data have some structure, e.g.:
• Book: chapters, sections, titles, paragraphs, references,

index, etc.
• Item for sale: name, picture, price (range), ratings,

promotions, etc.

6

XML: eXtensible Markup Language
<bibliography>
<book>
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>
<book>…</book>

</bibliography>

• Text-based
• Capture data (content), not presentation
• Similar but different from HTML

• Data self-describes its structure
• Names and nesting of tags have meanings!

7

Other nice features of XML

• Portability: Just like HTML, you can ship XML data
across platforms
• Relational data requires heavy-weight API’s

• Flexibility: You can represent any information
(structured, semi-structured, documents, …)
• Relational data is best suited for structured data

• Extensibility: Since data describes itself, you can
change the schema easily
• Relational schema is rigid and difficult to change

8

XML terminology
• Tag names: book, title, …
• Start tags: <book>, <title>, …
• End tags: </book>, </title>, …
• An element is enclosed by a pair of start and end

tags: <book>…</book>
• Elements can be nested: <book>…<title>…</title>…</book>
• Empty elements: <is_textbook></is_textbook>

• Can be abbreviated: <is_textbook/>

• Elements can also have attributes:
<book ISBN="…" price="80.00">
• Many other features

FOrdering generally matters, except for attributes

<bibliography>
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>…
</bibliography>

9

Well-formed XML documents

A well-formed XML document
• Follows XML lexical conventions
• Wrong: <section>We show that x < 0…</section>
• Right: <section>We show that x < 0…</section>

• Other special entities: > becomes > and & becomes &

• Contains a single root element
• Has properly matched tags and properly nested

elements (like parentheses matching)
• Right: <section>…<subsection>…</subsection>…</section>
• Wrong: <section>…<subsection>…</section>…</subsection>
• Think of {{()}([])} matching!

10

A tree representation
11

bibliography

title author author author publisher year section

book book

…

…

Foundations
of Databases

Abiteboul Hull Vianu Addison
Wesley

1995

title section section …

Introduction

… …

In this
section we
introduce the
notion of

content

i

semi-
structured
data

…

<bibliography>
<book ISBN="ISBN-10" price="80.00">

<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
…..

</book>…
</bibliography>

DTD and Schema (details omitted)
• DTD (Document Type

Definitions)

• Specifies Schema and
constraints for XML

• Specifies a grammar (e.g.
+, ? for one or more, zero
or 1 etc.)

• Another option XML
schema (.xsd)

12

<?xml version="1.0"?>
<!DOCTYPE bibliography [

<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN ID #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<!ELEMENT content (#PCDATA|i)*>
<!ELEMENT section (title, content?, section*)>

]>
<bibliography>

<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>…</section>…

</book>
…

</bibliography>

Optional slide

XML versus relational data
Relational data
• Schema is always fixed in

advance and difficult to
change
• Simple, flat table structures

• Ordering of rows and
columns is unimportant

• Exchange is problematic
• “Native” support in all

serious commercial DBMS

13

XML data
• Well-formed XML does not

require predefined, fixed
schema
• Nested structure; ID/IDREF(S)

permit arbitrary graphs
• Ordering forced by

document format; may or
may not be important
• Designed for easy exchange
• Often implemented as an

“add-on” on top of relations

Case study

• Design an XML document representing cities,
counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county

and state)

• Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state

14

A possible design
15

geo_db

county county

state state

…

…
name

capital_city_id

…

city

name
area

id
name

population
city

Design an XML document representing cities, counties, and states
For states, record name and capital (city)
For counties, record name, area, and location (state)
For cities, record name, population, and location (county and state)

Assume the following:
Names of states are unique
Names of counties are only unique within a state
Names of cities are only unique within a county
A city is always located in a single county
A county is always located in a single state

16

Lecture 11b:

XPath and XQuery

Query languages for XML

• XPath
• Path expressions with conditions
FBuilding block of other standards (XQuery, XSLT, XLink,

XPointer, etc.)

• XQuery
• XPath + full-fledged SQL-like query language

• Also XSLT (not covered)

• We would cover only simple queries

17

Try the queries in this lecture online

• There are many online
Xpath/Xquery testers
e.g.

• http://codebeautify.org/X
path-Tester (XPATH)

• http://videlibri.sourceforg
e.net/cgi-bin/xidelcgi
(XQUERY)

• Try with this example (or
change it for different
queries)

• Caveats
• if you see bad characters,

you might have to replace
them like " or .

• Not everything works all
the time! Try different
websites and config

18

<bibliography>
<book ISBN="ISBN-10" price="70">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>abc</section>
</book>
<book ISBN="ISBN-11"price="20">

<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

http://codebeautify.org/Xpath-Tester
http://videlibri.sourceforge.net/cgi-bin/xidelcgi

XPath

• XPath specifies path expressions
that match XML data by navigating
down (and occasionally up and
across) the tree
• Example
• Query: /bibliography/book/author

• Like a file system path, except there can
be multiple “subdirectories” with the
same name

• Result: all author elements reachable
from root via the path
/bibliography/book/author

19

<bibliography>
<book ISBN="ISBN-10" price="70">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>abc</section>
</book>
<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

Basic XPath constructs

/ separator between steps in a path
name matches any child element with this tag name
* matches any child element
@name matches the attribute with this name
@* matches any attribute
// matches any descendent element or the

current element itself
. matches the current element
.. matches the parent element

20

Simple XPath examples

• All book titles
/bibliography/book/title

• All book ISBN numbers
/bibliography/book/@ISBN

• All title elements, anywhere in the document
//title

• All section titles, anywhere in the document
//section/title

• Authors of bibliographical entries (suppose there
are articles, reports, etc. in addition to books)

/bibliography/*/author

21<bibliography>
<book ISBN="ISBN-10" price="70">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>abc</section>
</book>
<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

Predicates in
path expressions

[condition] matches the
“current” element if condition
evaluates to true on the current
element
• Books with price lower than $50

/bibliography/book[@price<50]
• XPath will automatically convert the

price string to a numeric value for
comparison

22<bibliography>
<book ISBN="ISBN-10" price="70">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>abc</section>
</book>
<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

Predicates in
path expressions – contd.
• Books with author “Abiteboul”

/bibliography/book[author='Abiteboul']

• Books with a publisher child element
/bibliography/book[publisher]

• Prices of books authored by
“Abiteboul”
/bibliography/book[author='Abiteboul']/@price

23<bibliography>
<book ISBN="ISBN-10" price="70">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>abc</section>
</book>
<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

More complex predicates

Predicates can use and, or, and not
• Books with price between $40

and $50
/bibliography/book[40<=@price and

@price<=50]

• Books authored by “Abiteboul”
or those with price no lower than
$50

/bibliography/book[author='Abiteboul' or
@price>=50]

/bibliography/book[author='Abiteboul' or
not(@price<50)]

• Any difference between these two queries?

24<bibliography>
<book ISBN="ISBN-10" price="70">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>abc</section>
</book>
<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

A tricky example

• Suppose for a moment that price is a child
element of book, and there may be multiple
prices per book
• Books with some price in range [20, 50]
• Wrong answer:

/bibliography/book[price >= 20 and price <= 50]
(returns true with one price 10 and one 70!)
• Correct answer:

/bibliography/book[price[. >= 20 and . <= 50]]

25

Predicates involving node-sets
/bibliography/book[author='Abiteboul']

• There may be multiple authors, so author in general
returns a node-set (in XPath terminology)
• The predicate evaluates to true as long as it

evaluates true for at least one node in the node-set,
i.e., at least one author is “Abiteboul”
• Another tricky query

/bibliography/book[author='Abiteboul' and author!='Abiteboul']
• Will it return any books?

• (Returns books with at least one “Abiteboul” and one
non-Abiteboul as authors!)

26

More XPath operators and functions
Frequently used in conditions:
x + y, x – y, x * y, x div y, x mod y
contains(x, y) true if string x contains string y
count(node-set) counts the number nodes in node-set
position() returns the “context position” (roughly, the position of the

current node in the node-set containing it)
last() returns the “context size” (roughly, the size of the node-set

containing the current node)
name() returns the tag name of the current element

27Read yourself if needed for HW problems

Books with fewer than 10 sections
/bibliography/book[count(section)<10]

All elements whose tag names contain “section” (e.g., “subsection”)
//*[contains(name(), 'section')]

Title of the first section in each book
/bibliography/book/section[position()=1]/title
A shorthand: /bibliography/book/section[1]/title

Title of the last section in each book
/bibliography/book/section[position()=last()]/title

XQuery

• XPath + full-fledged SQL-like query language

• XQuery expressions can be
• XPath expressions
• FLWOR expressions
• Quantified expressions
• Aggregation, sorting, and more…

• An XQuery expression can return a new result XML
document

28

Sample online Xquery tester:
http://videlibri.sourceforge.net/cgi-bin/xidelcgi

Use Xquery 3.0, node format = xml, output format = adhoc,
and compatibility = Standard Xquery in the settings

http://videlibri.sourceforge.net/cgi-bin/xidelcgi

A simple XQuery based on XPath
Find all books with price lower than $50

<result>{
doc("bib.xml")/bibliography/book[@price<50]

}</result>
• Things outside {}’s are copied to output verbatim
• Things inside {}’s are evaluated and replaced by the

results
• doc("bib.xml") specifies the document to query
• Omit this in the online tester
• The XPath expression returns a sequence of book

elements
• These elements (including all their descendants) are

copied to output

29

FLWR expressions

• Retrieve the titles of books published before 2000,
together with their publisher
<result>{

for $b in /bibliography/book
let $p := $b/publisher
where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

30

• for: loop
• $b ranges over the result sequence, getting

one item at a time
• let: “assignment”

• $p gets the entire result of $b/publisher
(possibly many nodes)

• where: filtering by condition
• return: result structuring

• Invoked in the “innermost loop,” i.e., once
for each successful binding of all query
variables that satisfies where

An equivalent formulation

• Retrieve the titles of books published before 2000,
together with their publisher
<result>{

for $b in /bibliography/book[year<2000]
return

<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

31

Another formulation

• Retrieve the titles of books published before 2000,
together with their publisher
<result>{

for $b in /bibliography/book,
$p in $b/publisher

where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

32

Nested loop

• Is this query equivalent to the previous two?
• Yes, if there is one publisher per book
• No, in general

• Two result book elements will be
created for a book with two publishers

• No result book element will be created
for a book with no publishers

Yet another formulation

• Retrieve the titles of books published before 2000,
together with their publisher
<result>{

let $b := /bibliography/book
where $b/year < 2000
return

<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

33

• Is this query correct?
• No!
• It will produce only one output book

element, with all titles clumped together
and all publishers clumped together

• All books will be processed (as long as one is
published before 2000)

An explicit join

• Find pairs of books that have common author(s)
<result>{
for $b1 in doc("bib.xml")//book
for $b2 in doc("bib.xml")//book
where $b1/author = $b2/author

and $b1/title > $b2/title
return
<pair>
{$b1/title}
{$b2/title}

</pair>
}</result>

34

← These are string comparisons,
not identity comparisons!

More features
• Learn if useful in homework, not needed for exams
• Subqueries

• normalize-space(string) removes leading and trailing spaces from
string, and replaces all internal sequences of white spaces with one
white space

• Existential (some) and Universal (all)
• Conditional

• Use anywhere you’d expect a value, e.g.:
• let $foo := if (…) then … else …
• return <bar blah="{ if (…) then … else … }"/>

35

Extract book titles and their authors; make
title an attribute and rename author to writer

<bibliography>{
for $b in doc("bib.xml")/bibliography/book
return

<book title="{normalize-space($b/title)}">{
for $a in $b/author
return <writer>{string($a)}</writer>

}</book>
}</bibliography>

Find titles of books in which XML is
mentioned in some section

<result>{
for $b in doc("bib.xml")//book
where (some $section in $b//section

satisfies
contains(string($section),

"XML"))
return $b/title

}</result>

Find titles of books in which XML is
mentioned in every section

<result>{
for $b in doc("bib.xml")//book
where (every $section in $b//section

satisfies
contains(string($section),

"XML"))
return $b/title

}</result>

OPTIONAL SLIDE

Aggregation
• Learn if useful in homework, not needed for exams
• List each publisher and the average prices of all its

books
<result>{

for $pub in distinct-values(doc("bib.xml")//publisher)
let $price := avg(doc("bib.xml")//book[publisher=$pub]/@price)
return

<publisherpricing>
<publisher>{$pub}</publisher>
<avgprice>{$price}</avgprice>

</publisherpricing>
}</result>

• distinct-values(collection) removes duplicates by value
• If the collection consists of elements (with no explicitly declared types), they

are first converted to strings representing their “normalized contents”
• avg(collection) computes the average of collection (assuming each item in

collection can be converted to a numeric value)

36
OPTIONAL SLIDE

37

Lecture 11c:

XML to Relational Data

Which one is easier?

• XML to relational?

• Or

• Relational to XML?

38

Mapping XML to relational

• Store XML in a column
• CLOB (Character Large OBject) type
• Not much useful!

• Alternatives?
• Schema-oblivious mapping:

well-formed XML → generic relational schema
• Node/edge-based mapping for graphs
• Interval-based mapping for trees
• Path-based mapping for trees (not covered)

• Schema-aware mapping (not covered):
valid XML → special relational schema based on DTD

39

Example – Node/Edge Based

• How would you translate it to a relational schema?
• Element? Attribute? Parent-child relationship?
• Keys? (Do not see the next slides yet!)

40

<bibliography>
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>…
</bibliography>

bibliography

book book

title author author author publisher year

ISBN
Price

Node/edge-based: schema

• Element(eid, tag)
• Attribute(eid, attrName, attrValue)
• Attribute order does not matter

• ElementChild(eid, pos, child)
• pos specifies the ordering of children
• child references either Element(eid) or Text(tid)

• Text(tid, value)
• tid cannot be the same as any eid

FNeed to “invent” lots of id’s
FNeed indexes for efficiency, e.g., Element(tag),
Text(value)

41

Key: (eid, attrName)

Keys: (eid, pos), (child)

Node/edge-based: example
42

<bibliography>
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>…
</bibliography>

Element
ElementChild

Attribute

Text

eid tag

e0 bibliography

e1 book

e2 title

e3 author

e4 author

e5 author

e6 publisher

e7 year

tid value

t0 Foundations of Databases

t1 Abiteboul

t2 Hull

t3 Vianu

t4 Addison Wesley

t5 1995

eid attrName attrValue

e1 ISBN ISBN-10

e1 price 80

eid pos child

e0 1 e1

e1 1 e2

e1 2 e3

e1 3 e4

e1 4 e5

e1 5 e6

e1 6 e7

e2 1 t0

e3 1 t1

e4 1 t2

e5 1 t3

e6 1 t4

e7 1 t5

Node/edge-based: queries
• //title

• SELECT eid FROM Element WHERE tag = 'title';

• //section/title
• SELECT e2.eid

FROM Element e1, ElementChild c, Element e2
WHERE e1.tag = 'section'
AND e2.tag = 'title'
AND e1.eid = c.eid
AND c.child = e2.eid;

FPath expression becomes joins!
• Number of joins is proportional to the length of the path expression

• //bibliography/book[author="Abiteboul"]/@price
• More complex SQL queries with EXISTS needed

• //book//title
• Needs recursion (not covered yet)

43

tid value

t0 Foundations of Databases

t1 Abiteboul

t2 Hull

t3 Vianu

t4 Addison Wesley

t5 1995

eid attrName attrValue

e1 ISBN ISBN-10

e1 price 80

eid tag

e0 bibliography

e1 book

e2 title

e3 author

e4 author

e5 author

e6 publisher

e7 year

eid pos child

e0 1 e1

e1 1 e2

e1 2 e3

e1 3 e4

e1 4 e5

e1 5 e6

e1 6 e7

e2 1 t0

e3 1 t1

e4 1 t2

e5 1 t3

e6 1 t4

e7 1 t5

Element

ElementChild

Text

Attribute

Example – Interval Based

• How would you translate it to a relational schema?
• Using intervals!

44

<bibliography>
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>…
</bibliography>

bibliography

book book

title author author author publisher year

ISBN
Price

Interval-based: example
45

1<bibliography>
2<book ISBN="ISBN-10" price="80.00">
3<title>4Foundations of Databases</title>5
6<author>7Abiteboul</author>8
9<author>10Hull</author>11
12<author>13Vianu</author>14
15<publisher>16Addison Wesley</publisher>17
18<year>191995</year>20
</book>21…

</bibliography>999

bibliography

book

title author author author publisher year

1,999,1

2,21,2

3,5,3 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3

First two fields denote the interval.. see next slide

Interval-based: schema
• Element(left, right, level, tag)
• left is the start position of the element
• right is the end position of the element
• level is the nesting depth of the element (strictly

speaking, unnecessary)
• Key is left

• Text(left, right, level, value)
• Key is left

• Attribute(left, attrName, attrValue)
• Key is (left, attrName)

46

Interval-based: example

FWhere did ElementChild go?
• 𝑒! is the parent of 𝑒" iff:

[𝑒!.left, 𝑒!.right] ⊃ [𝑒".left, 𝑒".right], and
𝑒!.level= 𝑒".level− 1

47

1<bibliography>
2<book ISBN="ISBN-10" price="80.00">
3<title>4Foundations of Databases</title>5
6<author>7Abiteboul</author>8
9<author>10Hull</author>11
12<author>13Vianu</author>14
15<publisher>16Addison Wesley</publisher>17
18<year>191995</year>20
</book>21…

</bibliography>999

bibliography

book

title author author author publisher year

1,999,1

2,21,2

3,5,3 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3

Interval-based: queries
• //section/title

• SELECT e2.left
FROM Element e1, Element e2
WHERE e1.tag = 'section' AND e2.tag = 'title'
AND e1.left < e2.left AND e2.right < e1.right
AND e1.level = e2.level-1;

FPath expression becomes “containment” joins!
• Number of joins is proportional to path expression length

• //book//title
• SELECT e2.left

FROM Element e1, Element e2
WHERE e1.tag = 'book' AND e2.tag = 'title'
AND e1.left < e2.left AND e2.right < e1.right;

FNo recursion!

48

Element(left, right, level, tag)
Text(left, right, level, value)
Attribute(left, attrName, attrValue)

