
CompSci 316 Spring 2020: Course Project

100 points (20% of course grade)

Posted: Saturday, January 25

Important Dates
Project mixer (in class): ​Tuesday, January 28
Milestone 1: ​Monday, February 24
Milestone 2: ​Tuesday, March 24
Demo:​ April 21-25​ (details on this later)
Final report submission: ​due by the scheduled demo slot; can be updated until April 26.
In addition, there will be private piazza threads for each project and each member needs to
write a short update of what s/he did in a week on the project in that thread. More details below.

Overview
You have the option of doing either a “standard” or an “open” course project. The “standard”
project is to build a database-driven website from the ground up. With this option, there will be
some examples and instructions to help you get started. No prior experience in developing such
applications is assumed. On the other hand, if you want to try something unconventional, you
may choose the “open” option and build anything of your liking—provided it is related to data
management. With the open option, you will need to make a detailed proposal, and the course
staff may not be able to provide as much programming help and support. Generally speaking,
more work is expected, but the reward may be bigger too.
This document also describes a number of possible ideas for both project options. Feel free to
talk to the course staff if you choose one of them. Of course, you are welcome to come up with
your own ideas as well. Some of the “open” project ideas below could evolve into Graduation
with Distinction projects for Computer Science majors, and the instructor will be glad to
supervise continuation of successful projects as CompSci 391 (Independent Study) or CompSci
393 (Research Independent Study).

Submission and Grading

There will be ​two milestones and a final project demo​; see Important Dates above for due
dates. You will find the details of what to submit for each checkpoint later in this document
under respective sections. ​Only one member needs to submit through Gradescope on behalf of
the entire project team; ​make sure all members are added​ to the submission. ​Because of the
open-ended nature of course projects, certain instructions may not apply to your particular
project; when in doubt, consult the instructor.
Each project will be graded on a scale of 0-100 points. A breakdown is as follows:

● 24 points for submitting the required work at three checkpoints (as a team);
● 6 points for posting weekly updates (as an individual);
● 40 points for completing the proposed work (as a team);
● 30 points for the quality of the work (as a team).

Out of the 70 points for completeness/quality, 5 to 10 points are reserved for impressive and/or
innovative work beyond what is expected​. In other words, meeting the expectation will ensure a
project grade of at least ​A​-, but ​A​ and ​A​+ will require exceptional work.
What the “required work” means may evolve over the course of the project. We will start with
your Milestone 1 proposal, help you get a feel for the amount of work involved, and work with
you to ensure that it meets the minimum requirements of depth and scope for a course project.

Teamwork
The project should be completed in ​5 person teams​.​The project should be completed in
5-person teams. Any other team size requires explicit approval from the instructor (please make
your request through Piazza private questions); team sizes below 4 or above 5 are strongly
discouraged. Regardless of the team size, an equal amount of work is expected and the same
grading scale will be applied. You are required to:

● In each milestone/final report, report each team member’s effort.
● Between the Milestone 1 due date and final project demo date, post a brief weekly

progress update for yourself.
Details of how to post these updates will be announced by email. By default, all members in a
team will receive identical grades for the project, except the 6 points for posting weekly updates
as an individual. If there is any problem working with your team members that you cannot
resolve by yourself, bring it to the instructor’s attention as soon as possible. Last-minute
complaints of the form “my partner did nothing” will not help.

● You are strongly encouraged to use a shared coding platform like ​“git” ​to work on the
project together. For your report/proposal/design etc., you can use a shared editor like a
google doc, or for “latex” documents (that is used for writing research papers), you can
use online platform like ​overleaf.com​ where everyone can edit at the same time.

If you have a project idea, you can post a ​piazza message​ by giving a short description and the
number of additional team members you are looking for. In the ​project mixer class​, if we have
time, you are also welcome to tell the class if you have an idea and recruit members.​ Even if

you do not have a concrete idea by the time of the mixer, you can say what domains and types
you are interested in, and look for teams. We will try to have 1-2 rounds of discussions in
student groups in the project mixer class so that you can talk to your classmates about project.

Platform Issues
To develop the project, you are encouraged to use the VM provided by the course. We will post
some options of cloud-based VM soon. As examples, the course staff provide the source code
(from the course ​git​ repository) and tutorials (on the course website) for several
database-backed websites that are implemented using different technologies and deployable on
the course VM. Of course, there are many other ways to develop web and database
applications. If you wish, you may use other languages, tools, or application development
frameworks, or run servers on your own machines. Setting up the whole application/database
stack is non-trivial and can be a rewarding experience. However, the course staff can only
support the course VM and technologies used by the provided examples.

“Standard” Course Project
The “standard” project is to build a database-driven web application. Specifically, you will need
to complete the following tasks over the course of this semester. Note that different members of
a team can work on some of these tasks concurrently.

1.​ ​Pick your favorite data management application.​ ​It should be relatively substantial,
but not too enormous. Several project ideas are described at the end of this document, but
you are encouraged to come up with your own. When picking an application, keep the
following questions in mind:

a.​ ​How do you plan to acquire the data to populate your database? Use of real
datasets is highly recommended. You may use program-generated “fake” datasets if
real ones are too difficult to obtain.
b.​ ​How are you going to use the data? What kind of queries do you want to ask?
How is the data updated? Your application should support both queries and updates.

2.​ ​Design the database schema.​ ​Start with an E/R diagram and convert it to a relational
schema. Identify any constraints that hold in your application domain, and code them as
database constraints. If you plan to work with real datasets, it is important to go over some
samples of real data to validate your design (in fact, you should start Task 7 below as early
as possible, in parallel to Tasks 3-6). Do not forget to apply database design theory and
check for redundancies.
3.​ ​Create a sample database using a small dataset.​ ​You may generate this small
dataset by hand. You will find this sample database very useful in testing, because large
datasets make debugging difficult. It is a good idea to write some scripts to

create/load/destroy the sample database automatically; they will save you lots of typing
when debugging.
4.​ ​Design a web-based user interface for your application.​ ​Think about how a typical
user would use your site. Optionally, it might be useful to build a “canned” demo version of
the site first (i.e., with hard-coded rather than dynamically generated responses), while you
brush up your website design skills at the same time. Do not spend too much time on
refining the look of your interface; you just need to understand the basic “flow” in order to
figure out what database operations are needed in each step of the user interaction.
5.​ ​Write SQL queries that will supply dynamic contents for the web pages you
designed for Task 4.​ Also write SQL code that modifies the database on behalf of the user.
You may hard-code the query and update parameters. Test these SQL statements in the
sample database.
6.​ ​Choose an appropriate platform for your application.​ Python or PHP? JavaScript or
plain HTML? ​We encourage you to explore ​Flask-based platforms​ for website or app --
you can receive help and support from ​Duke Colab​ for this platform (guest lecture in the
project mixer class). While you are welcome to use any platform as you wish, we might not
be able to provide you support if you run into problems.​ Start by implementing a “hello
world” type of simple database-driven web application, deploy it in your development
environment, and make sure that all parts are working together correctly. The course
website will provide pointers to working examples.
7.​ ​Acquire the large “production” dataset, either by downloading it from a real data
source or by generating it using a program.​ Make sure the dataset fits your schema. For
real datasets, you might need to write programs/scripts to transform them into a form that is
appropriate for loading into a database. For program-generated datasets, make sure they
contain enough interesting “links” across rows of different tables, or else all your join queries
may return empty results. Keep in mind that the course VM’s hard drive has limited capacity:
for larger databases, you may need to create a separate, bigger virtual hard drive—see
course staff for help if you run into issues.
8.​ ​Test the SQL statements you developed for Task 5 in the large database.​ Do you
run into any performance problems? Try creating some additional indexes to improve
performance.
9.​ ​Implement and debug the application and the web interface. ​Test your website with
the smaller sample database first. You may need to iterate the design and implementation
several times in order to correct any unforeseen problems.
10.​ ​Test your website with the production dataset.​ Resolve any performance problems.
11.​ ​Polish the web interface. ​You may add as many bells and whistles as you like, though
they are optional because they are not the main focus of this course.

Milestone 1.​ You should have completed Tasks 1-5 and have started thinking about 6 and 7. If
you plan to work with real data, you should also have made significant progress on Task 7 (you
should at least ensure that it is feasible to obtain the real dataset, transform it, and load it into
your database). Submit the following electronically under “Project Milestone 1”:

● ​A progress report ​containing:

o ​ ​A brief description of your application.
o ​ ​A plan for getting the data to populate your database, as well as some sample
data.
o ​ ​A list of assumptions that you are making about the data being modeled.
o ​ ​An E/R diagram for your database design.
o ​ ​A list of database tables with keys declared.
o ​ ​A description of the Web interface. You can write a brief English description of
how users interact with the interface (e.g., “the user selects a car model from a
pull-down menu, clicks on the ‘go’ button, and a new page will display all cars of
this model that are available for sale”). Or, instead, you can submit a canned
demo version of the website.

● A text file ​members.txt​, listing the members of your team, and for each member, a
description of effort and progress made by this member to date.

● A ​.zip​ or ​.tar.gz​ archive of your source code. The source code directory should at least
contain:

o ​ ​A ​README​ ​file describing how to create and load your sample database.
o ​ ​Files containing the SQL code ​used for creating tables, constraints, stored
procedures and triggers (if any).
o ​ ​A file ​test-sample.sql​ ​containing the SQL statements you wrote for Task 5.
o ​ ​A file ​test-sample.out​ ​showing the results of running ​test-sample.sql​ over your
sample database. You can create the file by running:
psql ​dbname​ -af test-sample.sql > test-sample.out
where ​dbname​ is the name of your database.
o ​ ​If applicable, ​any code for downloading/scraping/transforming real data​ that
you have written for Task 7 so far.

Milestone 2.​ Y​ou should have completed Tasks 1-8 and have made good progress on 9.
Submit the following electronically under “Project Milestone 2”:

● A progress report​ containing:
o ​ ​New assumptions, E/R diagram, and list of tables (if they have changed since
Milestone 1).
o ​ ​A brief description of the platform you chose in Task 6. Not much details are
needed if you are using Flask-based platforms.
o ​ ​Changes you made to the database during performance tuning in Task 8, e.g.,
additional indexes created.

● ​A text file ​members.txt​, ​listing the members of your team, and for each member, a
description of effort and progress made by this member since the last milestone.

● A 5-mins video with a voiceover showing the operation of your (simple) website or the
app in the current stage​.​ You should show how the frontend works and what the user
can do and what happens “behind the scene” -- how the request goes to the backend for
a sample action in the frontend, how the backend operates and sends response back to
the frontend. ​Your website or app at this stage should be able to complete at least one
operation requested by the user in the frontend, complete it in the backend on the

dataset you are using, and return the result to the frontend.​ You should also say what
you plan to improve or add in the final version.

● A ​.zip​ or ​.tar.gz​ ​archive of your source code. At this point, your source code directory
should at least contain:

o ​ ​Code ​implementing a simple but working database-driven web application on
your chosen platform, which can serve as a starting point for completing your
project

O ​A ​README​ file ​describing how to generate the “production” dataset and load it
into your database. Do not submit the production dataset itself through if it is too
big; instead, submit the URL where you download/scrape the raw data (if
applicable), and the code that extracts and transforms (or generates) the
production dataset.
o A file test-production.sql ​containing the SQL statements you wrote for Task 5.
You may wish to modify some queries to return only the top 10 result rows
instead of all result rows (there might be lots for large datasets).
o A file test-production.out ​showing the results of running ​test-production.sql​ over
the production dataset.

Project Demo.​ ​At the end of the semester, you will need to present a working demo of your
system. Instructions on how to sign up for the demo will be given during the second to last week
of the class. ​Prior to your demo​, submit the following electronically under “Project Final”:

● A final project report,​ including a brief description of your application, the E/R
diagram for your database design, assumptions that you are making about the
data being modeled, and the list of database tables with descriptions.

● A text file ​members.txt​,​ listing the members of your team, and for each member, a
description of effort made by this member throughout the semester, highlighting
the effort since the last milestone.

● ​A ​.zip​ or ​.tar.gz​ ​archive of all your source code. The source code directory should
also contain a ​README​ file describing how to set up your servers and database,
and how to compile and deploy your application.

“Open” Course Project
The open option is a chance for you to build something that you really want, provided it is
related to data management. You need to write a detailed project proposal, and the course staff
will work with you to ensure that your project meets the minimum requirements of depth and
scope. You are encouraged to build novel systems and tackle challenging problems. Your “risk
factor” will be considered in grading. Because of limited time, it is important to stay focused and

ensure that certain pieces of your project are completely done; it is difficult to judge a project if
nothing works.
Before settling on an idea and submitting a proposal for Milestone 1, ​you must speak to
the instructor asap if you want to explore or go over an open project, and then talk to your
instructor/TAs about your project to obtain initial feedback.
Milestone 1.​ Submit the following electronically under “Project Milestone 1”:

● A project proposal​ containing:
o ​ ​A description of the problem you wish to solve or the application you wish to
develop, and, more specifically, what you plan to demonstrate at the end of this
project.
o ​ ​How it is important, interesting, and/or useful.
o ​ ​Initial thoughts on how to approach the problem or build the application,
including the preliminary system architecture and the platform you plan to use.
o ​ ​Survey of previous and/or related work and systems, including discussions of
how they relate to your problem as well as their limitations and/or flaws.
o ​ ​A brief summary of your discussion with the instructor or TA (which is required
before submitting the proposal).

● ​A text file members.txt,​ listing the members of your team, and for each member, a
description of effort and progress made by this member to date.

● A ​.​zip or .tar.gz ​archive of your source code.

The course staff will let you know whether the proposed project is acceptable.
Milestone 2. ​Submit the following electronically under “Project Milestone 2”:

● A progress report​ containing:
o ​ ​Changes/updates to your original proposal (if any).
o ​ ​Summary of progress so far, e.g., components built, tasks completed.
o ​ ​A list of tasks to be completed before the final due date.

● ​A text file members.txt, ​listing the members of your team, and for each member, a
description of effort and progress made by this member since the last milestone.

● A ​.zip or .tar.gz ​archive of your source code.

Project Demo Period. ​At the end of the semester, you will need to present a working demo of
your system. Instructions on how to sign up for the demo will be given during the second to last
week of the class. ​Prior to your demo​, submit the following electronically under ““Project Final”:

● A self-contained project report,​ including:
o ​ ​The problem description, motivation, and survey of related work as in the
project proposal, but more detailed and refined.
o ​ ​An in-depth discussion of your system, including the design choices you made.
o ​ ​Detailed description of any new approaches or algorithms that you are
developing.
o ​ ​Evaluation of your system, and if applicable, comparison with competing
systems. Be clear about what your evaluation metric is. If you have experimental

evaluation, describe the experimental setup in enough detail so that others can
repeat your experiments.
o ​ ​Any open issues or directions suitable for future work.

● A text file members.txt, ​listing the members of your team, and for each member, a
description of effort made by this member throughout the semester, highlighting the
effort since the last milestone.

● ​A .zip or .tar.gz​ archive of all your source code. The source code directory should also
contain a ​README​ file describing:

o ​ ​A brief overview of how your code is structured.
o ​ ​How to compile, set up, deploy, and use your system.
o ​ ​Any limitations in your current implementation.

“Standard” Project Ideas
Below is a list of possible project ideas for which high-quality datasets exist. Of course, you are
welcome to come up with your own.

Entertainment, sports, or financial websites
Examples include those that allow visitors to explore information about movies, music, sports,
games, stocks, etc. There are already many commercial offerings for such purposes. While
there is less room for innovation, there are plenty of examples of what a good website would
look like, as well as high-quality, well-formatted datasets. For example, ​IMDb​ makes their movie
database available (​http://www.imdb.com/interfaces​); historical stock quote can be downloaded
and scraped from many sites such as Yahoo! and Google Finance. This project is well-suited for
those who just want to learn how to build database-backed websites as beginners. You can
always spice things up by adding features that you wish those websites had (e.g., different ways
for summarizing, exploring, and visualizing the data).

Websites providing access to datasets of public interest
If you are interested in doing some good to society while learning databases, this project is for
you. There are many interesting datasets “available” to the public, but better ways for accessing
and analyzing them are still sorely needed. Here are some examples:

● Data.gov (​http://www.data.gov/​) has a huge compilation of data sets produced by
the US government.

● The Supreme Court Database (​http://scdb.wustl.edu/data.php​) tracks all cases
decided by the US Supreme Court.

● US government spending data (​https://www.usaspending.gov/​) has information
about and database downloads of government contracts and awards.

● Federal Election Commission (​https://www.fec.gov/data/​) has campaign finance
data to download as well as nice interfaces for exploring the data.

http://www.imdb.com/interfaces
http://www.data.gov/
http://scdb.wustl.edu/data.php
https://www.usaspending.gov/
https://www.fec.gov/data/

● ​GovTrack.us (​http://www.govtrack.us/developers​) tracks all bills through the
Congress and all votes casted by its members. The Washington Post has a nice
(albeit outdated) website (​http://projects.washingtonpost.com/congress/113/​) for
exploring this type of data (in predefined ways), but you can be creative with
additional and/or more flexible exploration and analysis options. Vote Smart
(​https://votesmart.org/​) has a wealth of additional, useful information on votes,
such as issue tags, synopses and highlights.

● ​Each state legislature maintains its own voting records. For example, you can
find North Carolina’s here:
http://www.ncleg.net/Legislation/voteHistory/voteHistory.html​. Some states
provide records in already structured formats, but for others, you may need to
scrape their websites.

● ​The Washington Post maintains a list of datasets
(​http://www.washingtonpost.com/wp-srv/metro/data/datapost.html​) that have
been used to generate investigative news pieces. Most of these datasets hide
behind some interface and may need to be scraped. Use this list for examples of
what datasets are “interesting” and how to present data to the public effectively.

● Stanford Journalism Program maintains a list of curated transportation-related
datasets (​http://www.datadrivenstanford.org/​).

● National Institute for Computer-Assisted Reporting maintains a list of datasets of
public interest (​http://www.ire.org/nicar/database-library/​). Use this list for
examples of what datasets are “interesting”—they are generally not available to
the public, but there may be alternative ways to obtain them.

Your task would be to take one of such datasets, design a good relational schema, clean
up/restructure the data, and build a website for the public to explore the dataset. If you are
interested in this line of projects, discuss your plan with the instructor. Some of the datasets
pose significant challenges in cleansing, analysis, and visualization; you may also consider an
“open” project option to focus on these challenges.

“Open” Project Ideas
Here are some “open” project ideas. Some are very open-ended, and you need to narrow down
their scope further. Some are not directly related to the materials covered in the course, and you
will need to do a fair amount of research and reading on your own.

RA and SQL Debugging
For Homework 1, you probably used the relational algebra debugging tool
(​https://ratest.cs.duke.edu/​) developed by Zhengjie Miao (​http://www.miaozhengjie.com/​), a PhD
student in Computer Science. Under the hood, this tool solves a challenging constrained
optimization problem to find the “smallest” subset of the test database that still shows the
difference between two queries. Do you have ideas of making this tool better (in terms of

http://www.govtrack.us/developers
http://projects.washingtonpost.com/congress/113/
https://votesmart.org/
http://www.ncleg.net/Legislation/voteHistory/voteHistory.html
http://www.ncleg.net/Legislation/voteHistory/voteHistory.html
http://www.washingtonpost.com/wp-srv/metro/data/datapost.html
http://www.datadrivenstanford.org/
http://www.ire.org/nicar/database-library/
https://ratest.cs.duke.edu/
http://www.miaozhengjie.com/

interface, functionality, or performance)? or help build a similar tool for debugging SQL queries?
Or provide more intuitive explanations and how to fix a wrong query?

 Explaining Query Answers
When you run a SQL query, compute some aggregates, and perhaps plot some graphs, you
may find some answers surprising or interesting – e.g.,

o ​ ​A Rank-5 grad school in CS raised more than double NSF funding than a
Rank-1 school – why?
o ​ ​Database researchers from industrial labs had a lot of publications in a top
database conference (SIGMOD) until about year 2000, and then had a decline,
whereas researchers from US schools had an increasing trend throughout –
why?
o ​ ​A prolific researcher in data mining suddenly had a drop in publications in one
top conference in one year – why?

Sudeepa has a project called FIREFly (Formal Interactive Rich Explanations on-the-Fly) where
with collaborator and students, she is building tools and techniques to answer such questions.
For instance, one idea is using “intervention” – make changes to a database, if that changes
your observation, that is a good explanation. E.g. if Researcher X was responsible for raising
most of the funding in the Rank-5 school above, if we remove him from the database with all his
funding, the difference in funding between two schools will decrease. One idea is
“counterbalance” -- why did a researcher had a drop in data mining publications in a year?
Probably because the researcher published more in databases that year or published in data
mining more in adjacent years. Note that all these explanations are answered automatically by
the system! There are several other problems under this project about (1) methodology for
explanations, (2) algorithms for explanations and their efficient implementation, (3) building
effective user interfaces, possibly using natural language processing (NLP) that would show and
explain to the users why the explanations make sense, etc. If you are interested in this topic in
general, contact Sudeepa.

Data Cleaning
Noisy data is everywhere (that does not satisfy the constraints/format, or has missing values),
and data cleaning is a crucial step in almost any real application. Sudeepa is working on
rule-based systems for data cleaning working like “SQL triggers” (to be covered in class) but
doing more than triggers as well as how to measure repairs. For instance, can we build a
system that can show how “noisy” the database is and how close it is to become a “clean
database”. If you are interested in working on a project related to data cleaning, contact
Sudeepa.

(If your group is interested in pursuing an open project, but not interested in the above topics,
please contact Sudeepa as well.)

